
Elliptic surfaces and B-M obstructions

Harvey Yau

March 19, 2024

Harvey Yau Elliptic surfaces and B-M obstructions March 19, 2024 1 / 36



Section 1

Elliptic surfaces

Harvey Yau Elliptic surfaces and B-M obstructions March 19, 2024 2 / 36



Elliptic surfaces

We usually express an elliptic curve with a Weierstrass equation

E : y2 + a1xy + a3y = x3 + a2x
2 + a4x + a6.

If we want to study families of elliptic curves, we may want to allow the
coefficients to vary as functions in a variable t, i.e. to have ai ∈ k(t).
Then, for almost every value of t, we can evaluate each ai at t to obtain
an elliptic curve

Et : y2 + a1(t)xy + a3(t)y = x3 + a2(t)x
2 + a4(t)x + a6(t).

(Note that we also need the discriminant to be nonzero.) We can also
view E as an elliptic curve defined over the field k(t).
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Elliptic surfaces

To encompass all of these, we can view the equation as defining an elliptic
surface E , whose points are triples (x , y , t) satisfying the equation given
earlier.

This surface E also comes with a fibration, which is a morphism E → P1
t

sending the point (x , y , t) to the point on P1 with coordinate t.
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Elliptic surfaces

The curve Et can be found inside the surface E as the fibre π−1(t)
above the point t.

The curve E is the generic fibre π−1(η) of the fibration.
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Elliptic surfaces and the generic fibre

The (scheme-theoretic) points of the generic fibre E are also points of the
elliptic surface E .

Generic point of E ↔ Generic point of E
Rational point of E ↔ Section of E
Closed point of E ↔ Irreducible horizontal curve of E
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An example

Consider the surface given by the equation

y2 = x3 + 3x2 − t2.

We see for example that the fibre above t = 1 is an elliptic curve, given by
equation y2 = x3 + 3x2 − 1. We call this a good fibre.
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An example - horizontal curves

The 2-torsion of the curve E is given by the three roots of the cubic
x3 + 3x2 − t2 = 0. However, this cubic is irreducible over k(t).

So the
three 2-torsion points are Galois conjugates of each other, and hence
correspond to the same scheme-theoretic point of E .
The corresponding horizontal curve of E will be the curve that passes
through the 2-torsion points of each fibre.
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An example - bad fibres

The fibre above t = 2 is not an elliptic curve, it is a nodal cubic. We call
this a bad fibre. Note that even though the node is a singular point of the
fibre E2, it is a nonsingular point of E .
The fibre above t = 0 is also a nodal cubic. This time, the node is a
singular point of E .
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Resolution of singularities

For our purposes, we will want to study elliptic surfaces that are smooth
(i.e. nonsingular). However, most of the time, the surface E we obtain
from writing down an equation in Weierstrass form will not be smooth.

To remedy this, we will resolve the singularity by blowing it up. This will
give us a new surface that looks the same as E everywhere except for the
singularity, and is smooth.
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Blowing up

To blow up a variety X ⊆ An at a point P:

First, determine all directions through P that lie in the variety. Note
that the set of all directions through P in An is Pn−1, so we will get a
projective variety V .

Then replace P with the variety V . This will give a new variety X ′,
which is the blowup of X at P.
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Blowing up

Algebraically, this can be done by taking a subvariety of An × Pn−1.

Pn−1 can be thought of as the set of all lines through the point P in
An. The subset {(a, l) ∈ An × Pn−1 : a ∈ l} is a subvariety W .

Remove the point P from X to get X \ P. Then take the preimage of
X \ P under the natural projection W → An.

Finally, take the closure of this preimage to obtain X ′.

This increases the dimension of the ambient space, and it means you have
to work with projective coordinates. For this reason, it’s easier practically
to divide up X ′ into affine patches, which can be embedded in An.
For example, in A3, one of the affine patches is obtained by substituting in

x ′ = x , y ′ = xy , z ′ = xz .

The other two patches are similar.
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Blowing up - examples
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Back to our example

When we blow up our elliptic surface E , we obtain the following surface E ′:

The fibres above t for t ̸= 0 remain unchanged (we have Et
∼= E ′

t .)
The fibre above t = 0, on the other hand, now looks like the intersection
of two curves, each isomorphic to P1.
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Reduction type

There are many different types of singularity one can get when writing
down a Weierstrass equation for an elliptic surface, and each will give a
different fibre.

We’ve seen three types of fibre so far:

I0: An elliptic curve (a good fibre).

I1: A nodal cubic.

I2: Two copies of P1, intersecting transversely at 2 points.

Kodaira classified all possible fibres of minimal elliptic surfaces, and gave
each a Kodaira symbol.
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Tate’s algorithm

To figure out which reduction type you get once you resolve all
singularities on a fibre above t0 ∈ P1, you would need to perform the
sequence of blowups.

Tate came up with an algorithm to describe how to do the blowups. It
looks something like this:

Step 0: Make your equation for the surface integral at t0. In other
words, perform a change of coordinates so that each v(ai ) ≥ 0. (Here
v denotes the order of vanishing at t0.)

Step 1: If v(∆) = 0 then the fibre is smooth and we have type I0.
Otherwise go to the next step.

Step 2-10: Do a blowup. If (some condition on v(ai )) then we have
type (something). Otherwise go to the next step.

Step 11: If you’ve reached this point then your equation was not
minimal. Make a change of coordinates to decrease v(∆) and go
back to Step 1.
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Tate’s algorithm

Tate did the blowups so you don’t have to. As it turns out, if the residue
characteristic is not 2 or 3, you can deduce the reduction type solely from
the values of v(∆) and v(j).

Type I0 In II III IV I∗0 I∗n IV∗ III∗ II∗

v(j) ≥ 0 −n ≥ 0 ≥ 0 ≥ 0 ≥ 0 −n ≥ 0 ≥ 0 ≥ 0
v(∆) 0 n 2 3 4 6 n + 6 8 9 10

Note: even if your Weierstrass equation might not be minimal, you still
know v(∆) mod 12, so you have enough information to determine the
reduction type.
However, if you want explicit formulae for the smooth surface, you do have
to do all the blowups.
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Tate’s algorithm
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Section 2

The Brauer group
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Cyclic algebras

The Brauer group of a field K can be thought of as the group Br(K ) of
central simple algebras over K , or as the Galois cohomology group
H2(K , K̄×).

One simple example of a central simple algebra is a cyclic algebra.

Definiton (Cyclic algebra)

Let K be a field containing a (fixed) primitive nth root of unity ζn.
Let a, b ∈ K×. Then the cyclic algebra (a, b)n is the K -algebra generated
by i , j satisfying

in = a, jn = b, ij = ζnji .
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Cyclic algebras

This can also be understood in terms of Galois cohomology.

We may identify Z/nZ ∼= µn by sending 1 to ζn.

Then, by Kummer theory, H1(K ,Z/nZ) ∼= K×/(K×)n. So we can
think of a, b ∈ K× as representing cocycle classes in H1(K ,Z/nZ).
The tensor product Z/nZ⊗ Z/nZ is just Z/nZ. We can then identify
this with µn ⊆ K̄×.

This induces a cup-product map

H1(K ,Z/nZ)⊗ H1(K ,Z/nZ) → H2(K , K̄×).

The cup product of a with b is then the class corresponding to (a, b)n.
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The Brauer group of a variety

The Brauer group of X is defined to be the étale cohomology group
H2(X ,Gm).

Suppose X is smooth and integral, and let k(X ) be its
function field.
Then we have an injective map

Br(X ) → Br(k(X ))

so we can think of Br(X ) as a subgroup of Br(k(X )).
By functoriality of cohomology, we can evaluate an element A ∈ Br(X ) at
any point P ∈ X . This is not true of elements of Br(k(X )) in general.
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Brauer group of an elliptic curve

Let E be an elliptic curve defined over K .

Then Br(E ) is well understood:
we have

Br(E ) ∼= Br0(E )⊕ Br(K )

where Br0(E ) is the subgroup of elements that evaluate to zero at the
identity point OE ∈ E . Moreover, we have an isomorphism

Br0(E ) ∼= H1(K ,E ).
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Descent by isogeny

The group H1(K ,E ) is still quite large, so we look at smaller, more
manageable subgroups.

Let ϕ : E → E ′ be an isogeny, and ϕ̂ : E ′ → E the
dual isogeny.

There is a short exact sequence

0 → E [ϕ] → E → E ′ → 0.

This gives a long exact sequence

· · · → E ′(K ) → H1(K ,E [ϕ]) → H1(k ,E ) → . . . .
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Descent by isogeny

· · · → E ′(K ) → H1(K ,E [ϕ]) → H1(k ,E ) → . . . .

Suppose K contains a primitive nth root of unity.
If we choose an point P ∈ E (K ) of order n, and set ϕ to be the isogeny
with kernel generated by P, then we will have

H1(K ,E [ϕ]) ∼= H1(K ,Z/nZ) ∼= K×/(K×)n.

Therefore, elements of K×/(K×)n will give us elements of H1(K ,E ), and
hence elements of the Brauer group Br(E ).
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Brauer elements of an elliptic curve

Next, we need to describe the map K×/(K×)n → Br(E ) explicitly.

To do
this, we use the following theorem:

Theorem

We have a compatibility between pairings

H1(K ,E ) E (K ) Br(K )

H1(K ,E [ϕ]) H1(K ,E ′[ϕ̂]) Br(K )

×

×

The top pairing is given by evaluating the Brauer element corrresponding
to C ∈ H1(K ,E ) at P ∈ E (K ).
The bottom pairing is given by cup-product and the Weil pairing
E [ϕ]× E [ϕ̂] → µn.
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Brauer elements of an elliptic curve

H1(K ,E ) E (K ) Br(K )

K×/(K×)n K×/(K×)n Br(K )

×

×

The map E (K ) → K×/(K×)n in the middle column can be described by
some function f ∈ K (E ).
So if we fix some a ∈ K×/(K×)n, and let A be its image under the map
K×/(K×)n ∼= H1(K ,E [ϕ]) → Br(E ), we get

A(P) = (a, f (P))n.
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Brauer elements of an elliptic curve

A(P) = (a, f (P))n.

This suggests that the element A ∈ Br(E ) ⊆ Br(K (E )) is given by the
cyclic algebra (a, f )n.
Indeed, the above formula still holds upon extending K to a larger field, so
one can prove this by substituting in P to be the generic point of E . So
we have

A = (a, f )n.
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The residue map

We would now like a description of Br(X ) for X a more general variety.

Let D be an irreducible codimension-1 subvariety of X , i.e. an irreducible
divisor. It has an associated discrete valuation vD : k(X )× → Z. One can
then use this to define a residue map

∂D : Br(k(X )) → H1(k(D),Q/Z).

Theorem

The kernel of ∂D is the set of all elements of Br(k(X )) that can be
evaluated at D.

Theorem

Let X be a smooth, proper, integral variety over a field of characteristic 0.
Then A ∈ Br(k(X )) lies in Br(X ) if and only if ∂D(A) = 0 for all
irreducible divisors D of X .
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Brauer group of an elliptic surface

For X = E an elliptic surface, there are lots of irreducible divisors.

However, they come in two types:

Horizontal divisors: these correspond to closed points of the generic
fibre E , an elliptic curve defined over K = k(t).

Vertical divisors: these are irreducible components of fibres of the
fibration.

Therefore, all elements of Br(E ) ⊆ Br(k(E)) automatically have zero
residue on all horizontal divisors of E . And so we only need to check their
residues for vertical divisors.
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Local conditions

Let’s split up the checking of residues fibre by fibre.

We pick a point t ∈ P1. Then the fibre π−1(t) will be one of the Kodaira
reduction types seen earlier.
Each irreducible component D ⊆ π−1(t) gives a residue map ∂D to check.
We can convert the condition

∂D((a, f )n) = 0

into a condition on a ∈ K× = k(t)×.
The combination of all these conditions will be the local condition on
a ∈ K× given by P.
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Local conditions

Examples

If the fibre above P has type I0, then the local condition is

ordP(a) ≡ 0 mod n.

If the fibre above P has type I1, then the local condition is trivial
(everything satisfies the condition).

We will call the subgroup of K×/(K×)n satisfying all the local conditions
the Selmer group. It consists of the elements that map to things inside
Br(E) under the map K×/(K×)n → Br(E ).

Harvey Yau Elliptic surfaces and B-M obstructions March 19, 2024 31 / 36



Local conditions

Examples

If the fibre above P has type I0, then the local condition is

ordP(a) ≡ 0 mod n.

If the fibre above P has type I1, then the local condition is trivial
(everything satisfies the condition).

We will call the subgroup of K×/(K×)n satisfying all the local conditions
the Selmer group. It consists of the elements that map to things inside
Br(E) under the map K×/(K×)n → Br(E ).

Harvey Yau Elliptic surfaces and B-M obstructions March 19, 2024 31 / 36



Local conditions

Examples

If the fibre above P has type I0, then the local condition is

ordP(a) ≡ 0 mod n.

If the fibre above P has type I1, then the local condition is trivial
(everything satisfies the condition).

We will call the subgroup of K×/(K×)n satisfying all the local conditions
the Selmer group. It consists of the elements that map to things inside
Br(E) under the map K×/(K×)n → Br(E ).

Harvey Yau Elliptic surfaces and B-M obstructions March 19, 2024 31 / 36



Local conditions

Examples

If the fibre above P has type I0, then the local condition is

ordP(a) ≡ 0 mod n.

If the fibre above P has type I1, then the local condition is trivial
(everything satisfies the condition).

We will call the subgroup of K×/(K×)n satisfying all the local conditions
the Selmer group.

It consists of the elements that map to things inside
Br(E) under the map K×/(K×)n → Br(E ).

Harvey Yau Elliptic surfaces and B-M obstructions March 19, 2024 31 / 36



Local conditions

Examples

If the fibre above P has type I0, then the local condition is

ordP(a) ≡ 0 mod n.

If the fibre above P has type I1, then the local condition is trivial
(everything satisfies the condition).

We will call the subgroup of K×/(K×)n satisfying all the local conditions
the Selmer group. It consists of the elements that map to things inside
Br(E) under the map K×/(K×)n → Br(E ).

Harvey Yau Elliptic surfaces and B-M obstructions March 19, 2024 31 / 36



Brauer-Manin obstruction to weak approximation

To find a Brauer-Manin obstruction to weak approximation for our surface
E , it suffices to find some A ∈ Br(E) and some adelic point P ∈ E(AK )
such that

∑
v invA(Pv ) ̸= 0.

Our method of constructing elements of Br(E) always give elements in
Br0(E ). So they will always evaluate to 0 on the identity OE ∈ E .
This tells us we can always find local points Pv ∈ E(Kv ) with
invA(Pv ) = 0. So it suffices to find a local point Pv such that
invA(Pv ) ̸= 0.
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Example of a Brauer-Manin obstruction

Let k = Q(ζ3), and let E be the elliptic surface given by equation

y2 + xy +
1

27
t4y = x3.

The section (x = 0, y = 0, t) gives a point of order 3 on the generic
fibre E . So we get a 3-isogeny ϕ.

The corresponding function f : E (K ) → K×/(K×)n is given by
y ∈ K (E ).

The bad fibres have reduction types

0 1 −1 ±i ∞
I12 I1 I1 I1 IV∗
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Example of a Brauer-Manin obstruction

The local conditions are:

ordt(a) ≡ 0 mod 3 for all t except for 0,±1,±i ,∞.

ordt(a) ≡ 0 mod 3 and a(t) is a perfect cube for t = 0,∞.

No condition for t = ±1,±i .

Setting a = t−1
t+1 satisfies all of these local conditions. So

A =

(
t − 1

t + 1
, y

)
3

is an element of Br(E). Evaluating this at the local point
(t = 1− ζ3, x = 1, y = . . .) ∈ Q3(ζ3) gives

1
3 , which is nonzero.

So A gives a Brauer-Manin obstruction to weak approximation on E .
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Example of a Brauer-Manin obstruction

We can also construct a Brauer element of order 5 with this method.

Let k = Q(ζ5), and let ϕ = 1 + ζ5 + ζ−1
5 .

Let E be the elliptic surface given by the equation

y2 + (1− ϕ5t2)xy − ϕ5t2y = x3 − ϕ5t2.

By a similar method to the previous example, we get that

A =

(
t − 1

t + 1
, xy + y − x2

)
5

is an element of Br(E). Evaluating this at the local point
(t = 2, x = −ζ5, y = . . .) ∈ Q3(ζ3) gives

4
5 , which is nonzero.

So A gives a Brauer-Manin obstruction to weak approximation on E .
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Thanks for listening!
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