
Complex Multiplication and Kronecker’s
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Introduction

The Kronecker-Weber theorem states that every finite abelian extension of Q is contained in
a cyclotomic extension Q(ζn). Kronecker’s Jugendtraum (the “dearest dream of [Kronecker]’s
youth’) asks the same question for any number field, and though the general problem is still open,
the case for K an imaginary quadratic extension of Q is solved through the theory of elliptic curves
with complex multiplication.

This essay will build up the basic theory of elliptic curves with complex multiplication, and
explain how to generate the maximal abelian extension of an imaginary quadratic field from the
value of the j-invariant and Weber functions related to elliptic curves. We will go via the main
theorem of complex multiplication, which relates homomorphisms of torsion points on the curve
with Galois actions on the elliptic curve. In the course of this, we will also see the statements of
the main theorems of class field theory.

1 Elliptic curves over C with complex multiplication

Though we eventually want to study elliptic curves over number fields, we will first look at elliptic
curves over C with complex multiplication. Over C, elliptic curves can be converted into complex
tori, where the description of isogenies and endomorphisms is very simple.

1.1 Complex tori

A complex torus is the Riemann surface obtained by quotienting C by a lattice Λ ⊆ C. The surface
obtained has genus 1, and has an additive structure, much like an elliptic curve. Indeed, we can
find an elliptic curve that is complex analytic isomorphic to C/Λ:

Definition 1.1. Given a complex torus C/Λ, we obtain an elliptic curve

EΛ : y2 = 4x3 − g2(Λ)x− g3(Λ)

and a complex analytic isomorphism of Riemann surfaces given by

f : C/Λ → EΛ

[z] 7→ (℘(z), ℘′(z)).

Addition in C/Λ corresponds to the group law on EΛ:

f([z]) + f([z′]) = f([z] + [z′]).

As it turns out, every elliptic curve is isomorphic to a complex torus. This result is known as
the uniformisation theorem (see [4]).

Theorem 1.2 (Uniformisation theorem). Every elliptic curve over C is isomorphic to some EΛ,
where Λ is a lattice in C.

Because of this, we only need to study complex tori to learn about elliptic curves over C.
Next, we quote the following:

Theorem 1.3. � A map E → E′ between elliptic curves over C is an isogeny iff it is a complex
analytic map sending 0 to 0.

� Every isogeny ϕ : EΛ → EΛ′ is obtained from a linear map φ of the form

φ : C/Λ → C/Λ′

z + Λ 7→ λz + Λ′

with λΛ ⊆ Λ′.

Proof. See [4].
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Note that

kerφ ∼=
Λ′

λΛ
.

So the maps ϕ, φ will be isomorphisms iff Λ′ = λΛ.

Definition 1.4. Let ϑλ : C/Λ → C/λΛ be the map

z + Λ 7→ λz + λΛ.

Then every isomorphism of complex tori is of the form ϑλ for some λ ∈ C×.

Corollary 1.5. EΛ, EΛ′ are isomorphic iff the lattices Λ,Λ′ are homothetic, i.e. Λ′ = λΛ for
some λ ∈ C×.

Theorem 1.3 lets us easily describe the set of homomorphisms between two elliptic curves in
terms of the lattices. Moreover, since the group law on the elliptic curve corresponds to addition
on the complex torus, the group structure of the homomorphisms is also preserved.

Corollary 1.6. Let Λ,Λ′ ⊆ C be lattices.

i)
Hom(EΛ, EΛ′) ∼= {α ∈ C | αΛ ⊆ Λ′}

as groups.

ii)
End(EΛ) ∼= {α ∈ C | αΛ ⊆ Λ}

as rings.

1.2 Classifying elliptic curves with complex multiplication

We begin by determining what endomorphism rings are possible for an elliptic curve EΛ. To
describe them, we need to introduce a new definition.

Definition 1.7. Let K be a finite extension of Q. A subring R ⊆ K is an order of K if it is a
finitely generated Z-module and R⊗Z Q = K.

As it turns out, the only possible endomorphism rings are Z or an order of an imaginary
quadratic extension of Q. More specifically, we have:

Proposition 1.8. Let Λ = Zω1 ⊕ Zω2 be a lattice. If there is an imaginary quadratic extension
K/Q containing ω2/ω1, then EΛ has complex multiplication by an order of K. Otherwise, EΛ does
not have complex multiplication.

Proof. Let R = {α ∈ C | αΛ ⊆ Λ} ∼= End(EΛ). This is a subring of C, so it’s closed under addition
and contains Z. Indeed, one can easily see that R ∩Q = Z.

If α ∈ R, then αω1 ∈ Λ. This tells us that

R ⊆ ω−1
1 Λ = Z⊕ Zω2/ω1.

So R is a Z-submodule of a free Z-module of rank 2, hence R is a free Z-module of rank ≤ 2.
Moreover, we know that R ∩Q = Z, so either R = Z or R = Z⊕ Zα for some α = aω2/ω1 + b

with a, b ∈ Z, a ̸= 0.
Suppose R is strictly greater than Z. Then it contains some α /∈ Z. We get

R = Z⊕ Zα ⊆ Z[α] ⊆ R,

so Z[α] = Z ⊕ Zα has rank 2. Hence Q[α] = Z[α] ⊗Z Q is a 2-dimensional Q-vector space, which
tells us that Q(α)/Q is a degree 2 extension. But α = aω2/ω2 + b, so Q(ω2/ω1) = Q(α), and
so ω2/ω1 is contained in a quadratic extension K/Q. This extension must be imaginary because
ω2/ω1 /∈ R.
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Conversely, suppose that ω2/ω1 is contained in K, an imaginary quadratic extension of Q. Note
ω2/ω1 /∈ Q, so we have

Q⊕Qω2/ω1 = K = Q(ω2/ω1).

Hence we can write
(ω2/ω1)

2 =
a

b
ω2/ω1 +

c

d

for some a, b, c, d ∈ Z, b, d ̸= 0.
Then bd(ω2/ω1)ω2 ∈ Zω1 ⊕ Zω2, so bd(ω2/ω1) ∈ R. This is an element of R not in R, so R

must have rank 2. Then R⊗Z Q is a 2-dimensional Q-vector subspace of K, so it equals K.
Therefore R is an order of K.

If we look at the case where R is the maximal order, the ring of integers OK , then there is a
particularly simple description of the lattice Λ.

Proposition 1.9. EΛ has complex multiplication by OK iff Λ is homothetic to a fractional ideal
of K.

Proof. By Corollary 1.6, we have a ring homomorphism between the endomorphisms of EΛ and
the set {α ∈ C | αΛ ⊆ Λ}.

By Proposition 1.8, if EΛ has complex multiplication by OK , then Λ must be of the form
Zω1 + Zω2 with ω1/ω2 ∈ K. We can find some integer n > 0 such that nω1/ω2 = β ∈ OK . Then
Λ is homothetic to the lattice S = nZ+ βZ ⊆ OK .

Since EΛ has complex multiplication by OK , we must have αS ⊆ S for all α ∈ OK . This tells
us that S is in fact an ideal of OK . So Λ is homothetic to a fractional ideal of K.

Conversely, if Λ is homothetic to a fractional ideal of K, the set S = {α ∈ C | αΛ ⊆ Λ} does
not change under homothety, so we may assume WLOG that Λ is an ideal a ◁OK .

S is clearly contained in K. Also, a theorem of number fields tells us that

{α ∈ K | αa ⊆ a} = OK ,

so we can conclude that End(EΛ) ∼= S = OK .

Remark. For an order R of K, one can still prove by a similar argument that if EΛ has complex
multiplication by R, then Λ is homothetic to an ideal of R. However, the converse is not true - if
I is an ideal of R, the elliptic curve EI may have endomorphism ring strictly larger than R.

The set of all fractional ideals up to homothety should be very familiar, as it is just the ideal
class group Cℓ(OK).

Corollary 1.10. The set

ELL(OK) =
{elliptic curves over C with complex multiplication by OK}

isomorphism

is in one-to-one correspondence with Cℓ(OK), via

Cℓ(OK) → ELL(OK)

ā 7→ [Ea].

In particular, ELL(OK) = hk, the class number of K.

Proof. For well-definedness and injectivity, note that

Ea
∼= Ea′ ⇐⇒ ∃λ ∈ C× a′ = λa

⇐⇒ a, a′ are in the same ideal class

Then Proposition 1.9 tells us that the above map is surjective.
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1.3 Multiplication by elements of OK

Let E be an elliptic curve over C with complex multiplication by OK . By uniformisation theorem,
there exists a lattice Λ ⊆ C and a complex analytic isomorphism f : C/Λ → EΛ.

Then, by Corollary 1.6, we have a bijection

[·] : OK → End(E),

specified by
f−1[α]f : z + Λ 7→ αz + Λ.

Note that this map [·]E extends the standard map [·] : Z → End(E) representing multiplication by
n.

To show this is independent of our choice of isomorphism, note the following property: [α]E ∈
End(E) is the unique endomorphism such that

[α]∗Eω = αω

for any invariant differential ω of E.
The map [·]E makes E into an OK-module, via

α · P = [α]E(P ).

Proposition 1.11. Let ϕ : E → E′ be an isogeny between elliptic curves with complex multiplica-
tion by OK . Then, for all α ∈ OK

[α]E′ ◦ ϕ = ϕ ◦ [α]E .

In other words, ϕ is an OK-module homomorphism.

Proof. Let ω be an invariant differential of E. Then ϕ∗ω is an invariant differential of E′, so

[α]∗E′ϕ∗ω = αϕ∗ω

= ϕ∗(αω)

= ϕ∗[α]∗Eω.

We’re working in characteristic 0, so we can conclude from this [α]E′ϕ = ϕ[α]E .

We will want to keep track of the kernels of the maps [α]E .

Definition 1.12. Let M be an OK-module (e.g. a curve E with complex multiplication by OK).

� Let α ∈ OK . The α-torsion of M is

M [α] = {x ∈ M | α · x = 0}.

� Let c ◁OK . The c-torsion of M is

M [c] = {x ∈ M | α · x = 0 ∀α ∈ c}.

1.4 Isogenies — Multiplication by ideals

Earlier, we looked at maps from a complex torus to itself: we fixed the lattice and changed the
multiplier λ. Now, we fix the multiplier λ to be 1 and change the lattice.

Lemma 1.13. Let C/Λ have complex multiplication by OK , and let a be a fractional ideal of K.
Then C/aΛ also has complex multiplication by OK .

Proof. Proposition 1.9 tells us that there exists λ ∈ C× such that Λ = λa′, where a′ is a fractional
ideal of K. Then

aΛ = λaa′

and aa′ is a fractional ideal. So aΛ is homothetic to a fractional ideal, and so C/aΛ has complex
multiplication by OK .
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This allows us to define an action of fractional ideals on complex tori:

Definition 1.14. Define an action of fractional ideals on complex tori by

a ∗ C/Λ = C/a−1Λ.

Next, note that if c is an integral ideal, then we have OK ⊆ c−1. So Λ = OKΛ ⊆ c−1Λ and so
we get a natural map of complex tori

Definition 1.15. Given an ideal c of OK and a complex torux C/Λ with complex multiplication
by OK , define

φc : C/Λ → c ∗ C/Λ

z + Λ 7→ z + c−1Λ.

Proposition 1.16. The kernel of φc is the c-torsion, i.e.

kerφc = (C/Λ)[c].

Proof. Let Λ′ = {x ∈ C | x + Λ ∈ (C/Λ)[c]}, so that (C/Λ)[c] = Λ′/Λ. We wish to show that
Λ′ = c−1Λ.

From the definition of (C/Λ)[c], we have that Λ′ is the largest subset of C such that cΛ′ ⊆ Λ.
We have c(c−1Λ) = Λ, so c−1Λ ⊆ Λ′.
Also, note that

Λ′ ⊆ OKΛ′ = c−1(cΛ′) ⊆ c−1Λ.

So we have Λ′ = c−1Λ, and so we’re done.

Also note that φ respects the group law:

φc′c = φc′φc.

(This is technically an abuse of notation since φc′ is a map from c ∗ C/Λ.)
If c is a principal ideal, say c = (α), then cΛ = αΛ, so the complex tori c ∗ C/Λ,C/Λ are

isomorphic via the map ϑα : z 7→ αz. Composing this with φc then gives the endomorphism
EΛ → EΛ given by z 7→ αz, which is [α].

2 Working over a number field

Our next step is to switch from working over C to working over a number field L. This will allow
us to reduce modulo a prime ideal, which will prove important in finding isogenies later. However,
we also need to make sure that everything we want to use, the elliptic curves and the isogenies
between them, are defined over the number field L we work in.

2.1 Galois actions on elliptic curves

Suppose we have some elliptic curves and isogenies defined over a field L.
Let σ ∈ Aut(L) be a field automorphism. We can conjugate various things with with σ:

Elliptic curves Take an elliptic curve E defined over a field L. Suppose E has Weierstrass
equation

y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6.

We can conjugate E by σ to obtain the elliptic curve Eσ, defined by the equation

y2 + aσ1xy + aσ3y = x3 + aσ2x
2 + aσ4x+ aσ6 .

The associated quantites such as b2, . . . , b8, c4, c6,∆, ω, j are all rational functions in the ai with
integer coefficients, so they are also conjugated by σ. In particular, we have

j(Eσ) = j(E)σ.
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Points on elliptic curves We can also conjugate points as well: there is a function

E → Eσ

(x : y : z) 7→ (xσ : yσ : zσ).

However, this function is not a morphism, since the coordinates are not rational functions.

Isogenies between elliptic curves Finally, we can conjugate an isogeny ϕ : E → E′ by σ to
obtain an isogeny ϕσ : Eσ → E′σ. This gives a bijection

Hom(E,E′) → Hom(Eσ, E′σ)

that respects composition. In particular, σ induces a ring isomorphism

σ : End(E) → End(Eσ).

Note that if E has complex multiplication by OK , then both sides are canonically isomorphic
to OK via [·]. What is the ring isomorphism σ in terms of OK?

Lemma 2.1. Let E be an elliptic curve defined over a field L ⊆ C with complex multiplication by
OK . Then the isomorphism σ : End(E) → End(Eσ) is given by

([α]E)
σ = [ασ]Eσ .

Proof. On the invariant differential ωσ of Eσ, we have

([α]σE)
∗ωσ = ([α]∗Eω)

σ

= (αω)σ

= ασωσ

= [ασ]∗Eσωσ

Hence [α]σE = [ασ]Eσ .

So if σ fixes K, then σ gives an isomorphism of OK-modules E → Eσ.

Lemma 2.2. Let E be an elliptic curve over C with complex multiplication by OK . Then the
j-invariant of E is algebraic.

Proof. Corollary 1.10 tells us that |ELL(OK)| = hK . Therefore, the set

J = {j(E) : E has complex multiplication by OK}

also has size hK .
Let σ ∈ Aut(C). Then End(Eσ) ∼= End(E) ∼= OK , so

j(E)σ = j(Eσ) ∈ J.

Thus j(E) has at most hK different Galois conjugates, which implies that j(E) is algebraic over
Q of degree at most hK .

2.2 Picking our favourite elliptic curves in ELL(OK)

Given a complex torus C/a, we obtain an elliptic curve

Ea : y2 = 4x3 − g2(a)x− g3(a).

However, the coefficients g2(a), g3(a) might not be algebraic, so this elliptic curve is not defined
over a number field. Another problem we have to bear in mind is that two elliptic curves defined
over a field L can be isomorphic over C but not over L.

To deal with this, we construct a particular elliptic curve that is isomorphic to Ea but with
coefficients in some number field L, which we will use throughout the rest of this essay.
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Lemma 2.3. Given an elliptic curve E defined over C with j-invariant j = j(E), the curve

Ellj :


y2 = x3 − 3j

j−1728x+ 2j
j−1728 j ̸= 0, 1728

y2 = x3 + 1 j = 0

y2 = x3 + x j = 1728

is an elliptic curve defined over Q(j) that is isomorphic to E over C.

Proof. It’s clear that Ellj is defined over Q(j).
A calculation shows that the above equations give smooth curves and have j-invariant equal to

j, so E,Ellj are isomorphic over C.

Remark Note that Ellj behaves nicely under Galois conjugation: we have

(Ellj)
σ = Elljσ

for all σ ∈ Aut(C).
We use this formula to define representatives for ELL(OK).

Definition 2.4. Suppose a is a fractional ideal of K.
Define Eā to be the elliptic curve Ellj(Ea), which is defined over Q(j(Ea)), a number field. Note

that j(Ea) depends only on ā the ideal class of a, so Eā depends only on ā.
In all cases, we have j(Eā) = j(Ea), so Eā is isomorphic to Ea over C. So, for each a, we also

define
fa : C/a → Eā

a complex analytic isomorphism.

Definition 2.5. Define the set

Ell(OK) = {Eā : ā ∈ Cℓ(OK)}

This is a set of representatives for ELL(OK).

As discussed before, a Galois conjugate of an elliptic curve with complex multiplication by OK

also has complex multiplication by OK . This, combined with the fact that all curves in Ell(OK)
are of the form given in Lemma 2.3, implies that for all σ ∈ Aut(C) and all E ∈ Ell(OK) we have
Eσ ∈ Ell(OK) — the set Ell(OK) is closed under Galois conjugation.

Recall we had an action of fractional ideals on elliptic curves EΛ with complex multiplication
by OK . When we move to using representatives of each isomorphism class, this descends to an
action of ideal classes:

Definition 2.6. Define an action of Cℓ(OK) on Ell(OK) by

b̄ ∗ Eā = Eb̄−1ā.

We can also define the isogenies ϕc : Eā → c̄∗Eā corresponding to the maps φc : C/a → C/c−1a.

Definition 2.7. Let a be a fractional ideal of K and let c be an ideal of OK . Then ϕc : Eā → c̄∗Eā

is the isogeny
ϕc = fc−1a ◦ φc ◦ f−1

a ,

i.e. the isogeny making the following diagram commute:

C C

C/a C/c−1a

Eā c̄ ∗ Eā

×1
∼

φc

fa fc−1a

ϕc
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Lemma 2.8.
deg ϕc = Nm(c).

Proof. It suffices to show that kerϕc has size Nm(c) = |OK/c|. We have kerϕc = fa(kerφc), and
fa is an isomorphism, so kerϕc and kerφc have the same size.

Next, kerφc = c−1Λ/Λ, so it suffices to prove

|c−1Λ/Λ| = |OK/c|.

We will later see in Section 5 that c−1Λ/Λ and OK/c are isomorphic as OK-modules, which implies
the above fact.

2.3 A field of definition for isogenies

We’ve seen that our representatives Eā are defined over suitable number fields. We now want to
extend the number field so that the isogenies between these elliptic curves are also defined.

First, we look at isogenies from Eā to itself, i.e. we study the endomorphism ring End(Eā).

Lemma 2.9. Let E be an elliptic curve defined over a field L ⊆ C with complex multiplication by
OK . Then every endomorphism of E is defined over the field LK.

Proof. Take an endomorphism of E. It will be [α]E for some α ∈ OK .
Let σ be an automorphism of C fixing LK. σ fixes L, so E = Eσ. So we have

[α]σE = [ασ]E

= [α]E because σ fixes K

This tells us [α]E is fixed by all σ ∈ Aut(C) fixing LK. Therefore [α]E is defined over LK.

This tells us that every endomorphism of Eā is defined over the number field K(j(Ea)).
Next, we look at isogenies between the elliptic curves Eā for different ā ∈ Cℓ(OK).

Lemma 2.10. Let L be a number field such that Eā, Eā′ are defined over L. Let ϕ : Eā → Eā′ be
an isogeny. Then ϕ is defined over a finite extension of L.

Proof. Let σ ∈ Aut(C) be an automorphism fixing L. Then σ fixes Eā, Eā′ , so ϕσ is also an isogeny
Eā → Eā′ , i.e.

ϕσ ∈ Hom(Eā, Eā′).

Also, deg ϕσ = deg ϕ.
But now note that Hom(Eā, Eā′) is a free Z-module of finite rank, and deg is a positive definite

quadratic form on Hom(Eā, Eā′). So there are only finitely many isogenies of a given degree.
Therefore ϕ has only finitely images under conjugation by the automorphisms of C fixing L.

So ϕ is defined over a finite extension of L.

Proposition 2.11. There exists a finite extension L/K ⊆ C such that every elliptic curve Eā and
every isogeny Eā → Eā′ is defined over L.

Proof. There are only finitely many Eā. So we only need to extend L a finite number of times to
ensure that every Eā is defined over L.

Also, for every pair ā, ā′, the Z-module Hom(Eā, Eā′) is finitely generated (by Corollary 1.6),
and there are only finitely many of these pairs. So we only need to extend L a finite number of
times to have generators for every Hom(Eā, Eā′) be defined over L. This then implies that every
isogeny in every Hom(Eā, Eā′) is defined over L.

This gives us a suitable number field to work in for the next section.
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3 Reduction modulo P

Let L/K be an extension of number fields. We will use the following notation:

� P is a prime ideal of L.

� p is a the prime ideal of K that P lies over.

� kP, kp are the residue fields OL/P,OK/p respectively.

� p is the prime of Q that P, p lie over, i.e. p = char kp = char kP.

� LP,Kp are the completions of L,K with respect to the valuations vP, vp.

� OP,Op are the rings of integers of LP,Kp.

In this section, we move between working over a number field L and working over the finite
field kP. We look at reducing elliptic curves and isogenies modulo a prime ideal P, as well as
lifting isogenies between curves modulo P back up to isogenies between the original curves.

The most important advantage of working over a finite field is that Galois actions can have a
geometric meaning as well: the Frobenius element of Aut(kP) has a polynomial formula x 7→ xp,
so conjugating by the Frobenius element is an isogeny. When we lift this isogeny back up to L,
the isogeny we get will then have a close relationship with the lift of the Frobenius element up to
Aut(L).

3.1 The Frobenius element for an unramified prime

Let L be a Galois extension of K. Let p be an unramified prime of K, and P a prime of L lying
over p. Then the Galois extension L/K gives rise to a Galois extension of local fields LP/Kp, and
the Galois groups are related by restriction:

Gal(LP/Kp) ↪→ Gal(L/K).

The image of Gal(LP/Kp) in Gal(L/K) is the decomposition group.
Consider an automorphism σ ∈ Gal(LP/Kp). σ sends OP, the integral closure of Op in LP,

to itself, and it sends POP the maximal ideal of OP to itself too. Therefore, σ descends to a field
automorphism of Gal(kP/kp).

This therefore defines a natural group homomorphism

Gal(LP/Kp) → Gal(kP/kp).

Since p is an unramified prime, the corresponding extension of local fields LP/Kp is unramified,
and so the above map is an isomorphism.

Definition 3.1. Let L/K be a Galois extension of number fields, and let P be a prime of L lying
over an unramified prime p of K.

The Frobenius element for the unramified extension LP/Kp, written FrLP/Kp
, is the unique

element of Gal(LP/Kp) that descends to the Frobenius element x 7→ xNm(p) of Gal(kP/kp).
The Frobenius element for P in L/K, written (P, L/K), is the restriction of the Frobenius

element for LP/Kp to L.

In other words, (P, L/K) is the unique element of Gal(L/K) such that

∀x ∈ OL (P, L/K)(x) ≡ xNm(p) mod P.

We’ll see more about the Frobenius element later in Section 6, where we use it to describe
the local and global reciprocity maps. We’ll also see the Chebotarev density theorem, which tells
us that every element of Gal(L/K) is the Frobenius element for infinitely many primes P. So
understanding how a Frobenius element acts on an elliptic curve E will be enough to understand
how each element of Gal(L/K) acts on E.
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3.2 Reducing elliptic curves modulo P

Let E be an elliptic curve defined over a number field L, and let P be a prime of L. Let p = P∩K
be the prime of K that P lies over.

We now look at reduction modulo P. Like with Galois conjugation, there are multiple things
we can reduce:

Elliptic curves Given an integral Weierstrass equation for an elliptic curve E, we can reduce
all the coefficients modulo P to obtain a Weierstrass equation over the field kP. This then defines

a curve Ẽ over kP. The associated quantities b2, . . . , b8, c4, c6,∆, ω for the reduced equation are
then just the reductions of the original quantities modulo P.

Note however that if P|∆, then ∆̃ = 0, so the reduced equation does not define an elliptic curve.
If P|∆, then this won’t be a problem. In this case we have good reduction, and the j-invariant of

Ẽ will be the reduction of j(E) modulo P.
Only finitely many primes divide ∆, so all but finitely many primes give good reduction.

Points on elliptic curves We can reduce points: we have a reduction map

E → Ẽ

(x : y : z) 7→ (x̃ : ỹ : z̃),

where we pick x, y, z such that min(vP(x), vP(y), vP(z)) = 0. Here x̃ represents the residue class
of x modulo P.

Isogenies between elliptic curves In a similar way, if P is a prime of good reduction for
E,E′, and ϕ : E → E′ is an isogeny, then we can reduce the isogeny modulo P to get an isogeny
ϕ̃ : Ẽ → Ẽ′ such that the following diagram commutes:

E E′

Ẽ Ẽ′

ϕ

ϕ̃

3.3 The Frobenius isogenies

In finite fields such as kP, the Galois group Gal(kP/Fp) consists of Frobenius elements Frpn ∈
Gal(kP/Fp):

Frpn : x 7→ xp
n

.

So the function Frpn : Ẽ → ẼFrpn is actually an isogeny, which we will denote ψpn :

ψpn : Ẽ → ẼFrpn

(x : y : z) 7→ (xp
n

: yp
n

: zp
n

).

This isogeny has degree pn, and is called the pn-Frobenius isogeny.
These maps ψpn are the ‘fundamental’ inseparable morphisms: any morphism ϕ : Ẽ → Ẽ′ can

be written as ϕ = ψpn ◦ χ, for some n, where χ is a separable morphism.
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3.4 Lifitng the p-Frobenius isogeny

In this section, L will be a finite Galois extension of K satisfying the conditions of Proposition
2.11.

Let E ∈ Ell(OK), and let P be a prime of L. If p has degree 1, i.e. Nm(p) = p, then kp = Fp,
and so (P, L/K) restricts to Frp.

We will try to construct an isogeny E → E(P,L/K) that descends to the isogeny ψp modulo P.
First, we need some lemmas, which we will quote:

Lemma 3.2. Let χ be an isogeny Ẽ → Ẽ. Then there exists χ̂ : E → E reducing to χ modulo P
iff χ commutes with ϕ̃ for all isogenies ϕ : E → E.

Lemma 3.3. Let ·̃ represent reduction modulo P. Given E,E′/L elliptic curves with good reduction
modulo P, and an isogeny ϕ : E → E′, we get an isogeny

ϕ̃ : Ẽ → Ẽ′.

Then
deg(ϕ) = deg

(
ϕ̃
)
.

Proof. See [3].

Our approach to obtaining the Frobenius isogeny will be to construct some isogenies that reduce
to inseparable isogenies modulo P. First, we give a criterion for checking whether the isogeny ϕc
is inseparable:

Lemma 3.4. Let P be a prime of L of good reduction for E, and let p be the prime of K that P
lies over. Let c be an ideal of OK . Let ϕ̃c be the reduction of the isogeny

ϕc : E → c̄ ∗ E

modulo P. Then ϕ̃c is inseparable iff p divides c.

Proof. First we prove it in the case where c = (α) is a principal ideal. Then ϕc differs from the
isogeny [α] by an isomorphism, so ϕc is inseparable iff [α] is.

We check separability using the invariant differential. By definition of [·], we have

ϕ∗cω = [α]∗ω = αω.

Reducing this modulo P then gives

ϕ̃c
∗
ω̃ = α̃ω̃.

Note that ω̃ is an invariant differential for Ẽ. The RHS is zero iff α = 0 in OL/P, which holds
precisely when p divides (α) = c. So this proves the lemma for c principal.

Next, let c be any ideal of OK . We can find some ideal c′ with norm not divisible by p in the
inverse ideal class to c. Then c′c is principal. Now we have

ϕ̃c′c = ϕ̃c′ ◦ ϕ̃c.

Also,

deg ϕ̃c′ = deg ϕc′ by Lemma 3.3

= Nm(c′) by Lemma 2.8

which we have chosen to be coprime to p = char kP. Therefore ϕ̃c′ is separable, and so ϕ̃c is

inseparable iff ϕ̃c′c is.
But c′c is principal, and p does not divide c′, so we can conclude that ϕ̃c is inseparable iff p

divides c.
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Now we are ready to prove the following lemma, which relates ϕp with the p-power Frobenius
isogeny, provided that certain conditions are satisfied.

Lemma 3.5. Let E ∈ Ell(OK).
Let P be a prime of L satisfying:

i) P is a prime of good reduction for E.

ii) p = P ∩K is a degree 1 prime.

iii) For all ā ̸= ā′ ∈ Cℓ(OK), we have vP(j(Eā)− j(Eā′)) = 0.

Then there exists an isomorphism θ : p̄ ∗ E → E(P,L/K) such that the composition

θ ◦ ϕp : E → E(P,L/K)

reduces to the p-power Frobenius isogeny ψp when taken modulo P.

Proof. To ease notation, write σ for (P, L/K).

First note that ϕp has degree p. So by Lemma 3.3, ϕ̃p also has degree p. Next, by Lemma 3.4,

we know that ϕ̃p is inseparable.
So if we write ϕp as a composition of purely inseparable and separable morphisms, we get

ϕp = ψp ◦ χ.

Counting degrees, we find degχ = 1, i.e. χ is an isomorphism Ẽσ → ˜̄p ∗ E. Hence

j(Ẽσ) = j(˜̄p ∗ E),

and so
j(Eσ) ≡ j(p̄ ∗ E) mod P,

i.e.
vP(j(Eσ) ≡ j(p̄ ∗ E)) > 0.

Now, by condition (iii) on P, we deduce that

j(Eσ) = j(p̄ ∗ E)

and so Eσ = p̄ ∗ E.
Thus, we have the following diagram:

E Eσ Eσ

Ẽ Ẽσ Ẽσ

ϕp θ?

ϕ̃p

ψp

χ

∼

Next, we show that χ has a lift to an isogeny Eσ → Eσ. To check this, we use Lemma 3.2.
First note that for all isogenies [α]E and all points T ∈ Ẽ, we have

Frp

(
[̃α]E(T )

)
= [̃α]E

Frp
(Frp(T )).

Therefore

ψp ◦ [̃α]E = [̃α]E
Frp

◦ ψp
= [̃α]σE ◦ ψp

= [̃α]Eσ ◦ ψp
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and so

[α]Eσ ◦ ϕp = ϕp ◦ [α]E by Proposition 1.11

[̃α]Eσ ◦ ϕ̃p = ϕ̃p ◦ [̃α]E

[̃α]Eσ ◦ χ ◦ ψp = χ ◦ ψp ◦ [̃α]E

= χ ◦ [̃α]Eσ ◦ ψp by above.

ψp is surjective, so we conclude that χ commutes with [̃α]Eσ for all α ∈ OK . So, by Lemma 3.2,
χ lifts to an isogeny χ̂ : Eσ → Eσ.

We have deg χ̂ = degχ = 1 by Lemma 3.3, so χ̂ is an isomorphism, and therefore has an inverse
θ. This θ then completes the commutative diagram, giving

θ̃ ◦ ϕp = ψp.

4 Adeles and ideles

4.1 Definition

Given a prime p of K, we can ’work locally’ and only look at things modulo powers of p. When
moving from working modulo pn to modulo pn+1, there is a compatiblity condition. Local fields
are a way to work modulo pn for all n simultaneously, satisfying all the compatibility conditions.

An element of the completion Op can be thought of as a sequence (x1, x2, x3, . . .), where each
xi is a residue class modulo pi, and the xi are compatible:

xi ≡ xi+1 mod pi ∀i.

(If we want to talk about Kp instead of Op, we should replace ‘x ≡ y mod pn’ with vp(x−y) ≥ n.)
Consider working modulo c for a general ideal c ◁ OK . When moving from working modulo c

to working modulo c′ ⊆ c, there will be a compatibility condition. Adeles and ideles are a way to
work modulo c for all c simultaneously, satisfying all the compatibility conditions.

What will we use these for?

� In Section 5, we will use ideles to describe the isomorphisms K/a → K/a′ for a, a′ fractional
ideals of a. These modules are the union of the c-torsion submodules of C/a,C/a′ over all
integral ideals c ◁ OK , and correspondingly, the ideles are the inverse limits of the ‘data
modulo c’ over all ideals c.

� In Section 6 we will use ideles to formulate global class field theory. There is a formulation
of the main results of global class field theory without ideles, through the use of conductors
c, but the idelic formulation wraps this up through its topology, which tells us that when we
quotient out by an open subgroup we work modulo c for some ideal c.

First, we set up some notation.

� Let V be the set of all nontrivial places of K (both finite and infinite).

� Let Vf be the set of all finite places of K.

� Let Kv be the completion of K with respect to the place v.

� For v = p finite, let Op denote the ring of integers of Kp.

Op = {x ∈ Kp : vp(x) ≥ 0}.

� For v = p finite, let UKp
denote the group of units of OKp

.

UKp
= {x ∈ Kp : vp(x) = 0}.

13



Here are the definitions.

Definition 4.1. The ring of adeles of a number field K, written AK or just A, is the restricted
product of the completions Kv with respect to the open subrings Op.

In other words,

AK = {(xv)v | xv ∈ Kv ∀v, xp ∈ Op for all but finitely many finite places p}.

We write this as
AK =

∏
v∈V

′
Kv,

where the dash symbol indicates the restricted product.
We can also define the group of finite adeles, written Af , by only taking the restricted product

over the finite places:

Af =
∏
p∈Vf

′
Kp.

This can also be viewed as the quotient of A by the infinite places.

Definition 4.2. The group of ideles of a number field K, written IK or just I, is defined as

IK = A×
K .

It is the restricted product of the multiplicative groups K×
v with respect to the subgroups UKp

=

O×
p :

IK =
∏
v∈V

′
K×
v .

Similarly, the group of finite ideles is

If = A×
f =

∏
p∈Vf

′
K×

p .

The adele ring contains K, as well as all the completions of K.

� Given a place v, there is a natural injection Kv ↪→ AK , given by

x 7→ (. . . , 1, 1, x, 1, . . .)

where the x is in the v position.

� There is also a natural injection K ↪→ AK , given by

x 7→ (x)v.

So we can view K as a subring of AK .

In a similar manner, we can view K×, K×
v as subgroups of IK .

4.2 Ideal of an idele

Given any prime p of K, we can talk about the p-adic valuation of an idele x by looking at the
p-adic valuation of xp. Because we have taken the restricted product, we have

vp(xp) = 0 for all but finitely many p.

Therefore, we may define the ideal of an idele:

14



Definition 4.3. The ideal of an idele x ∈ I, written i(x) or just (x), is the fractional ideal

i(x) =
∏
p

pvp(xp).

So we have
vp(i(x)) = vp(xp)

for all p.

This gives a homomorphism from I to the group of fractional ideals of K. Let W be the kernel
of i, i.e.

Definition 4.4. W is the subgroup

W = {(xv)v ∈ I | x ∈ UKp
for all finite places p}.

One could think of the ideles I as the subset of the direct product
∏
vK

×
v where the ideal is

well-defined.
If L/K is an extension of number fields, then we have maps K ↪→ L and Nm : L→ K. We can

extend these to maps between the idele groups.

Definition 4.5. The norm map Nm : IL → IK is defined by

Nm(s)v =
∏
w|v

NmLw/Kv
(sw).

This then has the property that Nm(i(s)) = i(Nm(s)) for all s ∈ IL.

4.3 Topology of A
The topology of A is given by the restricted product topology:

Definition 4.6. A has a basis of open sets given by the sets∏
v

Sv,

where each Sv is an open subset of Kv, and Sp = Op for all but finitely many finite places p.

This makes A into a topological ring, i.e. addition and multiplication are continuous maps
A× A → A.

The image of K in A is not dense, but if we quotient A by any one component local field Kv

then the image of K in that is dense. This can be phrased more explicitly as the following:

Theorem 4.7 (Strong approximation theorem). Let v0 be a place of K. Let S be a finite subset
of V \ {v0}. For each v ∈ S, pick αv ∈ Kv and ϵv > 0. Then there exists x ∈ K such that

� |x− αv|v < ϵv for all v ∈ S

� x ∈ Op for all finite places p /∈ S, p ̸= v0

Proof. See [1] II.15.

Remark The subring K ⊆ A has several other nice topological properties, such as

� K is discrete.

� A+/K+ (the quotient of additive groups) is compact.
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4.4 Open subgroups of I
We want to make I into a topological group. Unfortunately, taking the subset topology from A
does not work, since inversion would not be continuous. Instead, we use the topology from the
restricted product for I:
Definition 4.8. I has a basis of open sets given by the sets∏

v

Sv,

where each Sv is an open subset of K×
v , and Sp = UKp

for all but finitely many finite places p.

Next, we want to look at open subgroups of I, because any continuous group homomorphism
to a discrete group will have kernel an open subgroup.

First, we describe the open subgroups of a local field K.

Definition 4.9. We define some open subgroups of K and index them.

� If K = C, let
U

(0)
C = C×.

� If K = R, let
U

(0)
R = R×, U

(1)
R = R>0.

� If K is non-archimedean, then let

U
(0)
K = O×

K

U
(n)
K = 1 + πnOK = {x ∈ K× : vK(x− 1) ≥ n}.

The open subgroups of K are

� If K = C, then the only open subgroup of K× = C× is C× = U
(0)
C itself.

� If K = R, then the only open subgroups of K× = R× are R× and R>0, i.e. U
(0)
R , U

(1)
R .

� If K is non-archimedean, then a basis of open neighbourhoods of 1 in K× is U
(n)
K (n ≥ 0).

Therefore, every open subgroup of K× contains U
(n)
K for some n ≥ 0.

Motivated by this, we define a way to index a basis of open subgroups:

Definition 4.10. A modulus m is a function from places of K to Z≥0, subject to the following:

� m(v) = 0 for all but finitely many places.

� If v is a complex place, then m(v) = 0.

� If v is a real place, then m(v) = 0 or 1.

We write it as a product of places:

m =
∏
v

vm(v).

We say v divides m if m(v) > 0.

We can write m as a product of the infinite and finite parts: m = m∞m0.
Note that m0 can be identified with an ideal of OK . Also, if K is totally imaginary (i.e. has

no real embeddings) then m∞ is always trivial.

Definition 4.11. Let m be a modulus.
Define Im to be the subgroup consisting of all s ∈ IK such that sv ∈ U

(m(v))
Kv

for all places v
with m(v) ≥ 1.

Define Wm to be the subgroup consisting of all s ∈ IK such that sv ∈ U
(m(v))
Kv

for all places v
(including those with m(v) = 0). Note that this means that sp ∈ UKp

for all primes p.
In other words, Wm =W ∩ Im.
ThenWm is an open subgroup of I, and every open subgroup of I containsWm for some modulus

m.
The largest such subgroup is when m = (1): this gives I(1) = I and W(1) =W .
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5 Torsion

5.1 c-torsion

The c-torsion points of C/Λ are given by

{a+ Λ ∈ C/Λ | a ∈ c−1Λ} = c−1Λ/Λ.

Note that these form an OK/c-module.
As is often the case, understanding the structure of the c-torsion points of C/Λ can be reduced

to understanding the structure of pe-torsion points of C/Λ, where p is a prime of K.

Lemma 5.1. Let c = pe11 . . . pekk be an integral ideal of OK .
Let Λ ⊆ C be a lattice satisfying OKΛ = Λ. Then

⊕
i

p−eii Λ

Λ
=

c−1Λ

Λ

as a direct sum of submodules.

Proof. Write qi = peii .
We have c = q1q2 . . . qk, with the qi pairwise coprime. Define bi = cq−1

i =
∏
j ̸=i qj .

We wish to show that the map ⊕
i

q−1
i Λ

Λ
→ c−1Λ

Λ

(zi + Λ)i 7→
∑
i

zi + Λ

is an isomorphism.
Injectivity: Suppose we have zi ∈ q−1

i Λ such that z =
∑
i zi ∈ Λ. Then, for each i, we have

zi = z −
∑
j ̸=i

zj .

For all j ̸= i, zj ∈ q−1
j Λ ⊆ b−1

i Λ. Also, z ∈ Λ ⊆ b−1
i Λ. So the RHS is in b−1

i Λ.

This shows that zi ∈ b−1
i Λ, which tells us that βzi ∈ Λ for all β ∈ bi. Similarly, zi ∈ q−1

i Λ tells
us that αzi ∈ Λ for all α ∈ qi. But qi+ bi = (1), so we can find α ∈ qi, β ∈ bi such that α+β = 1.
So

zi = αzi + βzi ∈ Λ,

i.e. zi + Λ is the identity element.
This holds for all i, so we’ve shown injectivity.
Surjectivity: We have

b1 + . . .+ bk = (1).

Therefore there exist bi ∈ bi such that

b1 + . . .+ bk = 1.

Now, given z ∈ c−1Λ, we will have

biz ∈ bic
−1Λ = q−1

i Λ.

So (biz + Λ)i is an element of the direct sum, and it maps to

(biz + Λ)i 7→
∑
i

biz + Λ = z + Λ.

Hence z + Λ is in the image, which shows surjectivity.
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The above lemma allows us to break down a torsion submodule into its primary components.
Next, we study each primary component on its own. For this, we will be able to say more about
the torsion submodule if we restrict to the case where Λ = a a fractional ideal.

Lemma 5.2. Let a be a fractional ideal of OK , and let p be a prime ideal of OK . Let π ∈ Kp be a
uniformiser of the completion Kp, and let d = vp(a) be the exponent of p in the prime factorisation
of a.
Note we have a natural inclusion map

p−ea ↪→ p−eaOp = πd−eOp.

Then, for all e > 1, this induces a map

p−ea

a
→ p−eaOp

aOp
=
πd−eOp

πdOp
,

and this is an isomorphism of OK-modules.

Proof. To show well-definedness and injectivity, we need to show that

p−ea ∩ aOp = a.

To do this, note that

aOp ∩ p−ea = πdOp ∩ p−ea

= {x ∈ p−ea : vp(x) ≥ d}
= pd ∩ p−ea

= pd ∩ (pd−e(ap−d))

The intersection of two fractional ideals is equal to their LCM, i.e. take the highest exponent of
each prime. ap−d is coprime to p, so the above is equal to

= pd(ap−d) = a,

which proves well-definedness and injectivity.
For surjectivity: let y be an element of πd−eOp. We wish to find x ∈ p−ea such that

x ≡ y mod πd,

i.e.
vp(x− y) ≥ d.

First, we can find y′ ∈ pd−eOK such that vp(y
′ − y) ≥ d, so we may assume WLOG that y ∈

pd−eOK . Next, by strong approximation theorem, we can find x ∈ K such that
vp(x− y) ≥ d

vq(x) ≥ vq(a) ∀q ̸= p prime, q|a
vq(x) ≥ 0 ∀q ̸= p prime, q ∤ a

.

Note that since e ≥ 1 and vp(y) ≥ d− e, the first condition here implies a fourth condition:

vp(x) ≥ d− e.

But the second to fourth conditions are equivalent to x ∈ p−ea, while the first condition says that
x maps to y. So this shows surjectivity.

In the case where Λ is homothetic to OK as a lattice, one can easily see that the c-torsion is
isomorphic to OK/c as an OK-module. We can now use the previous two lemmas to show that
this is true for Λ in general:
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Corollary 5.3. Let Λ ⊆ C be a lattice s.t. OKΛ = Λ. Then c−1Λ/Λ is a free OK/c-module of
rank 1.

Proof. We have

OK/c ∼=
⊕
i

OK/p
ei
i

and
c−1Λ

Λ
=
⊕
i

(peii )
−1Λ

Λ
.

So it suffices to show that p−eii Λ/Λ is a free OK/p
ei
i -module of rank 1 for each i.

Next, note that Λ is homothetic to a fractional ideal a of K, so it suffices to show that p−ea/a
is a free OK/p

e-module for any fractional ideal a.
But now observe

p−ea/a ∼=
πd−eOp

πdOp
by Lemma 5.2

∼=
Op

πeOp
by the map x 7→ πe−dx

∼= OK/p
e by Lemma 5.2 on the ideal pe

which completes the proof.

5.2 All the torsion

Let λ be a nonzero element of Λ. The torsion subgroup of C/Λ is

(C/Λ)tors = {z + Λ | z ∈ C,mz ∈ Λ for some m ∈ N}
= {z + Λ | z ∈ C, z/λ ∈ m−1λ−1Λ for some m ∈ N}
= {z + Λ | z/λ ∈ K}
= (λK)/Λ

Once again, we’ll focus on the case where Λ = a a fractional ideal. Then λ ∈ K, so the torsion
subgroup is simply K/a.

The torsion subgroup K/a is the union of the c-torsion subgroups (C/a)[c] for all integral ideals
c of OK . We can write this as the colimit (i.e. direct limit) of the diagram with directed set

{c−1a/a | c ◁OK}

c ≤ c′ ⇐⇒ c ⊇ c′

and inclusion maps
ιcc′ : c

−1a/a ↪→ c′−1a/a

for c ⊇ c′.

Definition 5.4. For p a prime of K, let

(C/a)[p∞] = {z ∈ C/a | zpn = 0 for some n ≥ 0}.

Note
(C/a)[p∞] = Kp/aOp.

By Lemma 5.1, the module c−1a/a is the coproduct of p−eii a/a, where c =
∏
i p
ei
i . Hence we

can decompose into primes: the above colimit is equal to⊕
p

lim−→ p−na/a ∼=
⊕
p

lim−→ p−naOp/aOp
∼=
⊕
p

Kp/aOp

as OK-modules.
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5.3 Isomorphisms of torsion submodules

We now look at the isomorphisms between the two torsion subgroups K/a,K/a′. Once again, we
can do this prime by prime.

Proposition 5.5. There is an isomorphism

F : a−1a′Op → HomOK
(Kp/aOp,Kp/a

′Op)

given by
F (t) : x+ aOp 7→ tx+ a′Op.

The module on the right describes all homomorphisms between the p∞-torsion components of
K/a and K/a′. The key idea is that any such homomorphism can be thought of as a collection of
homomorphisms between the pe-torsion components, with some compatibility conditions. Mean-
while, an element of the module a−1a′Op can be thought of as a collection of values te ∈ a−1a′

modulo some power of p, again with some compatibility conditions. The map F then precisely
relates these two things.

Proof. Let d = vp(a), d
′ = vp(a

′).

Then aOp = πdOp, a
′Op = πd

′Op, a
−1aOp = πd

′−dOp.
For f ∈ HomOK

(Kp/aOp,Kp/a
′Op) and e ≥ 0, write f |e for the restriction of f to the

pe-torsion:

f |e : πd−eOp/π
dOp → πd

′−eOp/π
d′Op

Note that f = f ′ iff f |e = f ′|e for all e.
We have F (t)|e = F (t′)|e iff t, t′ give the same map on pe-torsion. This happens iff tx − t′x ∈

πd
′Op for all x ∈ πd−eOp, i.e.

vp(t− t′) ≥ d′ − d+ e.

Therefore, F (t)|e = F (t′)|e for all e iff vp(t− t′) = ∞, i.e. iff t = t′. So F is injective.
Next, pick f ∈ HomOK

(Kp/aOp,Kp/a
′Op).

For a given e, pick an element xe with valuation vp(xe) = d− e. This generates πd−eOp/π
dOp

as an OK-module.
Then pick a representative ye ∈ πd

′−eOp such that

f(xe + πdOp) = ye + πd
′
Op.

Let te = ye/xe ∈ πd
′−dOp. We get

texe + πd
′
Op = f(xe + πdOp).

Then we will have
tex+ πd

′
Op = f(x+ πdOp)

for all x ∈ πd−eOp, i.e.
F (te)|e = f |e.

This gives a sequence t1, t2, . . . that describes how f acts on pe-torsion for each e. The te must
be compatible with each other: for all e, we must have F (te+1)|e = F (te)|e, which gives

vp(te+1 − te) ≥ d′ − d+ e.

Hence the sequence (te) is Cauchy, and so it converges to a limit t ∈ πd
′−dOp. This t then satisfies

F (t)|e = F (te)|e = f |e for all e, so F (t) = f . So we have shown surjectivity.

To define an isomorphism of OK-modules

f : K/a → K/a′,
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note that the p-primary parts must be sent to p-primary parts: if x ∈ p−na/a then f(x) ∈ p−na′/a′.
So we just need to give isomorphisms fp for each p to give an isomorphism

f :
⊕
p

Kp/aOp →
⊕
p

Kp/a
′Op.

In other words, specifying f is the same as specifying an cp ∈ {c ∈ Kp : vp(c) = vp(b)} for each
prime p of K.

So we can identify the set of all isomorphisms f : K/a → K/a′ with the set

{(cp)p : cp ∈ Kp, vp(cp) = vp(b)}.

This is precisely the subgroup of the finite ideles given by

{s ∈ If : (s) = b},

or the subgroup of the ideles given by (s) = b after quotienting out by the infinite places.
Therefore, given a fractional ideal a and any idele s ∈ IK , we get an isomorphism of torsion

subgroups K/a → K/sa, where sa = (s)a. We will denote this map s·.

Definition 5.6. Given a fractional ideal a and an idele s ∈ IK , the isomorphism of OK-modules

s· : K/a → K/sa

is defined by

s· :
⊕
p

Kp/aOp →
⊕
p

Kp/spaOp

(xp + aOp)p 7→ (spxp + spaOp)p.

Remark. � Note that this respects multiplication: we have

(s·) ◦ (t·) = (st) · .

� If α ∈ K×, then the map we get from the idele α is just ϑα.

α· : z + a 7→ αz + αa.

The next proposition will allow us to recover how this map s· acts on the c-torsion:

Proposition 5.7. Let a be a fractional ideal, and c, d integral ideals.
Recall that φd is the map C/a → C/d−1a given by

φd : z + a 7→ z + d−1a.

Then

i) φd is an isomorphism on c-torsion iff c, d are coprime.

ii) Suppose c, d are coprime. Let s ∈ I is an idele such that (s) = d−1, so that s· is an isomorphism

C/a → C/d−1a.

Then s· and φd agree on c-torsion iff s ∈ Ic.

Proof. Write c = pe11 . . . perr as a product of prime powers, where each ei > 0. Also, we will write
φ for φd.

(i) The kernel of the map φ is
d−1a/a,

while the c-torsion of C/a is
c−1a/a.
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Note that the c-torsion subgroups of C/a,C/d−1a both have size |OK/c|, so φ being injective is
equivalent to it being an isomorphism.

The kernel of the map φ on c-torsion is

d−1a/a ∩ c−1a/a = (d−1a ∩ c−1a)/a

= (d−1 ∩ c−1)a/a

which is trivial iff d−1 ∩ c−1 = OK , i.e. iff c, d are coprime.
(ii) Let di = vpi

(a). Then, since c, d are coprime, we have vpi
(a′) = di.

The map φ restricted to c-torsion is

φ :
⊕
i

πdi−eiOpi

πdiOpi

→
⊕
i

πdi−eiOpi

πdiOpi

(xpi
+ πdiOpi

)i 7→ (xpi
+ πdiOpi

)i,

while the map s· restricted to c-torsion is

s :
⊕
i

πdi−eiOpi

πdiOpi

→
⊕
i

πdi−eiOpi

πdiOpi

(xpi + πdiOpi)i 7→ (spixpi + πdiOKpi
)i.

For these to agree, we need for all i

xpi
≡ spi

xpi
mod πdi for all xpi

∈ πdi−eiOp,

which is equivalent to

vpi
((spi

− 1)xpi
) ≥ d for all xpi

such that vpi
(xpi

) ≥ d− e,

i.e.
vpi

(spi
− 1) ≥ e.

Therefore s·, φ are isomorphic on c-torsion iff vp(sp − 1) ≥ vp(c) for all p dividing c, which is
equivalent to s ∈ Ic.

Remark Given an idele s and an ideal c, we can always find α ∈ K such that sα−1 ∈ Ic:

� α ≡ sp mod pe for all p dividing c

� α ∈ Op for all p not dividing c

By strong approximation theorem, we can find a α ∈ K that satisfies all the congruence relations
at the same time. This then gives the α we want. So sα−1· acts as multiplication by 1 on c-torsion,
and so s· acts as multiplication by α. (Note that the multiplication-by-1 map need not be an
isomorphism of complex tori, as the lattices a, d−1a may differ. However, it is an isomorphism
when we reduce to the c-torsion.)

6 Class field theory

6.1 Frobenius elements

Let L/K be a finite Galois extension of number fields. Let p be an unramified prime of K, and
P a prime of L lying over p. Recall that we get a Frobenius element (P, L/K) ∈ Gal(L/K),
characterised as the unique element such that

(P, L/K)(x) ≡ xNm p mod P ∀x ∈ OL.

What would we get if we had picked another prime P′ of L instead?
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Let τ be an automorphism of Gal(L/K) sending P to P′. Then

τ(P, L/K)(x)− τ(x) ∈ P′ ∀x ∈ OL,

so
τ(P, L/K)τ−1(x)− x ∈ P′ ∀x ∈ OL.

Therefore σP′ = τ(P, L/K)τ−1.

Definition 6.1. Let L/K be a finite Galois extension of number fields, and let p be an unramified
prime of K.

Then we define (p, L/K) to be the set

(p, L/K) = {(P, L/K) | P a prime of L lying over p}.

This is a conjugacy class of Gal(L/K), since Gal(L/K) acts transitively on the primes of L lying
over p.

Here is a very powerful theorem on what values (p, L/K) can take that will prove useful later.

Theorem 6.2 (Chebotarev density theorem). Let C be a conjugacy class of Gal(L/K). Then
the density of primes p of K such that (p, L/K) = C is |C|/|Gal(L/K)|. In particular, there are
infinitely many such primes.

Example. Consider the case L = Q(ζn),K = Q. Then Gal(L/Q) ∼= (Z/nZ)×, with an isomor-
phism given by

F : a mod n 7→ (ζn 7→ ζan).

Note this is abelian, so all conjugacy classes have size 1.
The unramified primes of Q are the primes coprime to n, and the Frobenius element for an

unramified prime p is given by

(p, L/Q)(x) ≡ xp mod P ∀x ∈ OL

where P is a prime of L lying over p.
The element

F (p mod n) : ζn 7→ ζpn

satisfies the above equation, so
(p, L/Q) = F (p).

The Chebotarev density theorem, in this case, tells us that for each element σ ∈ Gal(L/Q) there
are infinitely many primes p such that F (p) = σ. In other words, for each a ∈ (Z/nZ)× there are
infinitely many primes p that are congruent to a modulo n, which is Dirichlet’s theorem on primes
in arithmetic progressions.

One particularly special case is when L/K is abelian, as conjugation does not change (P, L/K).
So the automorphism (P, L/K) is independent of the choice of P, and only depends on the (un-
ramified) prime p of K. Therefore, we can reinterpret (p, L/K) to be an element of Gal(L/K),
rather than a subset.

6.2 The Artin map

Definition 6.3. Define the following:

� Let IK be the group of fractional ideals of K.

� Suppose S be a finite set of primes of K. Then define ISK to be the subgroup of IK generated
by the primes not in S.

Let L/K be an abelian extension. We can then extend the map

p 7→ (p, L/K)

to a group homomorphism from ISK to Gal(L/K).
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Definition 6.4. Let L/K be a finite abelian extension of number fields, and let S be the set
of primes of K that ramify. The Artin map for L/K is the unique group homomorphism ISK →
Gal(L/K) sending each unramified prime p to its Frobenius element:

(·, L/K) : ISK → Gal(L/K)

(a, L/K) =

(∏
i

peii , L/K

)
=
∏
i

(pi, L/K)ei .

Note that the order of (p, L/K) = (P, L/K) is equal to [kP : kp] = f , and NmL/K(P) = pf .
So we have

(NmL/K(P), L/K) = 1

for all unramified primes P of L.
Therefore, if T is the set of all unramified primes of L, we have

NmL/K(ITL ) ⊆ ker(·, L/K).

6.3 Statements of class field theory

Class field theory is the study of abelian extensions of a field K. Of particular importance is the
maximal abelian extension of K. In this section, we will state the main results of class field theory;
for proofs, refer to [2].

Let K̄ be an algebraic closure of K. Note that if L,L′ ⊆ K̄ are abelian extensions of K, then
LL′ ⊆ K̄ is also an abelian extension of K. Hence, we can define

Definition 6.5. Kab, the maximal abelian extension of K, is the union of all abelian extensions
L ⊆ K̄ of K.

6.3.1 Local class field theory

Let L/K be an extension of local fields.
Recall that if L/K is an unramified extension, then the Frobenius element Fr ∈ Gal(kL/kK)

lifts to a unique element of Gal(L/K), which we will denote by FrL/K.

Theorem 6.6 (Local reciprocity law). There is a unique homomorphism (the local reciprocity
map)

[·,K] : K× → Gal(Kab/K)

with the following properties:

� If π is a uniformiser of K and L/K is a finite unramified extension, then

[π,L/K] = FrL/K .

� If L/K is a finite abelian extension, then the local reciprocity map composed with restriction
Gal(Kab/K) → Gal(L/K), which we write as [·,L/K], has kernel Nm(L×).
Furthermore, it induces an isomorphism

K×/Nm(L×) → Gal(L/K).

(Here Nm is the norm map NmL/K : L× → K×.)

Theorem 6.7 (Local existence theorem). For every open subgroup N of K× of finite index, there
exists a (unique) finite abelian extension L/K such that

Nm(L×) = N.

Remark. If K is archimedean, the local reciprocity map is very simple:

� [·,C] : C× → Gal(C/C) is the constant map.

24



� [·,R] : R× → Gal(C/R) is the map

x 7→

{
id x > 0

complex conjugation x < 0
.

There are no uniformisers or Frobenius elements, but the second part of the local reciprocity law
still holds.

In the case where L/K is unramified, the map [·,L/K] has a simple explicit description: note
that

Nm(O×
L ) = O×

K ,

so [·,L/K] is the identity on O×
K . Combining this with the fact [π,L/K] = FrL/K gives

[x,L/K] = Fr
vK(x)
L/K .

The unramified extensions L/K make up all the extensions with U
(0)
K = O×

K ⊆ Nm(L×). For the

ramified extensions, we will instead have U
(n)
K ⊆ Nm(L×) for some n > 0.

6.3.2 Global class field theory

We use this local reciprocity map [·,Kp] to define the global reciprocity map. First, we define a
map IK → Gal(L/K) for each finite abelian extension L/K.

Proposition 6.8. Let L/K be a finite abelian extension of number fields. Then there is a contin-
uous map

[·, L/K] : IK → Gal(L/K)

given by

[s, L/K] =
∏
v

[sv, Lw/Kv],

where v ranges over places of K, and for each v, w is a place of L lying over v.

Proof. Any two places w,w′ of L lying over the same place v of K will be Galois conjugates of
each other. So

[sv, Lw/Kv] = [sv, Lw′/Kv],

and so [sv, Lw/Kv] is independent of the choice of w.
Next, note that [sp, LP/Kp] = 1 for all p unramified such that vp(sp) = 0. This is true for all

but finitely many p, so the product given is finite.
Next, to show this is continuous, we construct a modulus m in the following way: for each place

v of K, we pick an integer m(v) such that

U
(m(v))
Kv

⊆ ker[·, Lw/Kv].

If v = p is a ramified prime, then we must pick m(p) > 0. On the other hand, if v = p is an
unramified prime, then we will pick m(p) = 0, as

U
(0)
Kp

⊆ ker[·, LP/Kp].

Hence m(p) is zero for all but finitely many primes, and so it really does define a modulus.
Then, for all s ∈Wm, we will have

[s, L/K] =
∏
v

[sv, Lw/Kv] =
∏
v

1 = 1.

This shows that the kernel contains Wm, so it’s open. Hence the map is continuous.
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These maps [·, L/K] are compatible with each other: if L ⊆ L′ are abelian Galois extensions of
K, then

[s, L′/K]|L = [s, L/K]

for all ideles s ∈ IK . Therefore, we can define

Definition 6.9. The global reciprocity map [·,K] : IK → Gal(Kab/K) is the (unique) homomor-
phism such that

[s,K]|L = [s, L/K]

for all finite abelian Galois extensions L/K and all s ∈ IK .

It is the unique homomorphism such that for all places v of K, abelian extensions L/K, and
places w of L lying over v, the following diagram commutes:

K×
v Gal(Kab

v /Kv) Gal(Lw/Kv)

IK Gal(Kab/K) Gal(L/K)

[·,Kv ]

[·,K]

It’s also continuous because each of the maps [·, L/K] are continuous.
Let Nm be the map

IL → IK

(sw)w 7→

∏
w|v

NmLw/Kv
(sw)


v

.

Theorem 6.10 (Global reciprocity law). The global reciprocity map [·,K] : IK → Gal(Kab/K)
has the following properties:

� [·,K] is surjective.

� K× is contained in the kernel of [·,K].

� The map
[·, L/K] : IK → Gal(L/K)

is surjective, and has kernel K× Nm(IL).
So it induces an isomorphism

IK/K× Nm(IL) → Gal(L/K).

Theorem 6.11 (Global existence theorem). For every open subgroup N ⊂ IK of finite index
containing K×, there exists a unique finite abelian extension L/K such that

K× Nm(IL) = N.

6.4 Ideal-theoretic formulation of global class field theory

The ideal-theoretic formulation of global class field theory uses the ideal groups IK , IL and the
Artin map (·, L/K) instead of the idele groups and the global reciprocity map [·,K] to state the
main theorems. In this section, we will use the idele-theoretic formulations to deduce the ideal-
theoretic versions.

First, we show how the global reciprocity map and the Artin map are related.

Proposition 6.12. Let L/K be a finite abelian extension. Then there exists a modulus m such
that
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� The primes dividing m are precisely those that ramify in L/K.

� [s, L/K] = 1 for all s ∈Wm.

� [s, L/K] = ((s), L/K) for all s ∈ Im.

Such a modulus m is called a defining modulus for L/K.

Proof. Recall in the proof of Proposition 6.8 that we constructed a modulus m, divisible by precisely
the ramified primes of K, such that Wm ⊆ ker[·, L/K].

Given s ∈ Im, we can calculate [s, L/K] in terms of the Artin map. Note that we have

sv ∈ U
(m(v))
Kv

for all v infinite and all v = p ramified, so [sv, Lw/Kv] = 1 for these places.
Therefore

[s, L/K] =
∏
v

[s, Lw/Kv]

=
∏

p unramified

[sp, LP/Kp]

=
∏

p unramified

Fr
vp(sp)

LP/Kp

=
∏

p unramified

(p, L/K)vp(sp)

= ((s), L/K)

Definition 6.13. Let Km,1 = K× ∩ Im. This is the set of all α ∈ K× such that α ∈ U
(m(v))
Kv

for
all v dividing m, i.e. the α satisfying

� vp(α− 1) ≥ m(p) for all finite places p dividing m

� σ(α) > 0 for all real places σ : K → R dividing m

Lemma 6.14.
Im/Km,1

∼= IK/K×.

Proof. The kernel of the map Im → IK/K× is K× ∩ Im = Km,1, so we get an injective map

Im/Km,1 → IK/K×.

So we just need to show that this map is surjective, i.e. for any s ∈ IK there exists t ∈ Im and
α ∈ K× such that s = tα.

By strong approximation theorem, there exists α ∈ K× such that

� α ≡ sp mod pm(p) for all p ∈ S,

� α, sv have the same sign for all real places v dividing m.

This then gives t = α−1s ∈ Im, so we are done.

Remark. This allows us to express [s, L/K] in terms of the Artin map for all s ∈ IK : we write
s = αt for some α ∈ K× and t ∈ Im, where m is as in Proposition 6.12. Then [s, L/K] = ((t), L/K).

Theorem 6.15 (Reciprocity law, ideal-theoretic version). Let L/K be a finite abelian extension.
Let S be the set of primes of K that ramify, and let T be the set of primes of L lying over the
primes in K. Then there exists a modulus m divisible precisely by the ramified primes such that

((α), L/K) = 1 ∀α ∈ Km,1,

i.e. Km,1 ⊆ ker(·, L/K).
Furthermore, the Artin map (·, L/K) : ISK → Gal(L/K) is surjective, and it has kernel

Km,1 Nm(ISL). So it induces an isomorphism

ISK/Km,1 Nm(ITL ) → Gal(L/K).
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Proof. We use the modulus m from the previous proposition. Then, for all α ∈ Km,1, we have

((α), L/K) = [α,L/K] since α ∈ Im
= 1 since α ∈ K×.

So (·, L/K) is trivial on Km,1. Hence the Artin map descends to a map

ISK/Km,1 → Gal(L/K).

The global reciprocity law tells us that we have an exact sequence

IL/L× IK/K× Gal(L/K) 0.Nm [·,L/K]

We now want to apply Lemma 6.14 on the above sequence, but we have to make sure that the
norm map is still well-defined. To deal with this, we define a modulus n of L by

� For P a prime of L lying over p a prime of K, set n(P) = fm(p), where Nm(P) = pf .

� For w a real place of L lying over v a real place of K, set n(w) = m(v).

Then we have Nm(In) ⊆ Im and Nm(Ln,1) ⊆ Km,1, so the map Nm : In/Ln,1 → Im/Km,1 is
well-defined. Hence, by Lemma 6.14, we get an exact sequence

In/Ln,1 Im/Km,1 Gal(L/K) 0.Nm [·,L/K]

Now we extend this to form a commutative diagram.

In/Ln,1 Im/Km,1 Gal(L/K) 0

ITL /Ln,1 ISK/Km,1 Gal(L/K) 0.

Nm

i

[·,L/K]

i

Nm (·,L/K)

This diagram commutes, because:

� The leftmost square commutes by definition of the idele norm map.

� The middle square commutes by Proposition 6.12.

We now want to show that the bottom row is exact, as this will give the result we want.

� Exactness at Gal(L/K) is equivalent to surjectivity of (·, L/K), which follows from surjec-
tivity of [·, L/K].

� To show exactness at ISK/Km,1, note that the maps i are surjective. Therefore

ker(·, L/K) = i(ker[·, L/K])

= i(Nm(In/Ln,1))

= Nm(i(In/Ln,1))

= Nm(ITL /Ln,1).

So we’re done.

Theorem 6.16 (Existence theorem, ideal-theoretic version). Let m be a modulus and let S be the
set of primes dividing m. Let H be a subgroup of ISK containing Km,1. Then there exists a finite
abelian extension L/K, unramified over all primes not dividing m, such that

Km,1 Nm(ITL ) = H,

where T is the set of all primes of L lying over a prime in S.
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Proof. Define N ′ ⊆ Im as the preimage of H under the ideal map i : Im → ISK :

N ′ = i−1(H) = {s ∈ Im | (s) ∈ H}.

Note that i−1(1) =Wm ⊆ N ′.
The preimage of H/Km,1 under i : Im/Km,1 → ISK/Km,1 is therefore

i−1(H/Km,1) = N ′/Km,1.

Next, define N = K×N ′ ⊆ IK , so that

N ′/Km,1 → N/K×

is an isomorphism.
N contains K×Wm, so it’s an open subgroup of IK of finite index, and hence by existence

theorem, there is some finite abelian field extension L/K such that N = K× Nm(IL), i.e. N is
the kernel of [·, L/K]. Since [Wm, L/K] = 1, we get that L/K is unramified over all primes not
dividing m, and so (·, L/K) is defined on ISK .

But now we can convert back into a statement about ideals, obtaining

ker
(
[·, L/K] : IK/K× → Gal(L/K)

)
= N/K×

ker ([·, L/K] : Im/Km,1 → Gal(L/K)) = N ′/Km,1

ker
(
(·, L/K) : ISK/Km,1 → Gal(L/K)

)
= H/Km,1

ker
(
(·, L/K) : ISK → Gal(L/K)

)
= H

which, by the previous theorem, tells us Km,1 Nm(ITL ) = H.

6.5 Ray class fields

A particularly important case in the existence theorem is when we take H = Km,1. In the idelic
formulation, this corresponds to taking N = K×Wm.

Definition 6.17. The ray class field modulo m, denoted Km, is the finite abelian extension corre-
sponding to the open subgroup K×Wm ⊆ IK .

Every finite abelian extension L has a defining modulus, hence is contained in a ray class field
Km for some m. The smallest m for which L ⊆ Km is called the conductor of L.

Because of this, the maximal abelian extension Kab is the union of all the ray class fields.

Definition 6.18. The smallest ray class field is K(1), the ray class field modulo (1). This is called
the Hilbert class field, and it is the maximal abelian extension that is unramified at all places (both
finite and infinite).

The degree of the Hilbert class field is

|Gal(K(1)/K)| = |IK/K×W |
= |IK/K×|
= |Cℓ(OK)|
= hK .

7 Main theorem of complex multiplication

First, we need a small lemma on the infinitude of primes satisfying a certain set of conditions. This
follows from the Chebotarev density theorem.

Lemma 7.1. Let L/K/Q be finite extensions, with L,K Galois over Q (so L/K is Galois too).
Let σ ∈ Gal(L/K). Then there are infinitely many primes P of L such that
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� (P, L/K) = σ

� p = P ∩K is a degree 1 prime.

Proof. First note that σ is also an element of Gal(L/Q). Let C be the conjugacy class of σ in
Gal(L/Q).

Suppose p satisfies (p, L/Q) = C. Then there is some prime P of L lying over p such that
(P, L/Q) = σ ∈ C. This P satisfies

σ(x) ≡ xp mod P ∀x ∈ OL,

so (P, L/K) = σ.
Next, let p = P ∩K. σ fixes K, so we have

x = σ|K(x) ≡ xp mod p ∀x ∈ OK .

This says that Frp acts trivially on OK/p, which tells us that p is a degree 1 prime. This therefore
shows that P satisfies the conditions required.

By Chebotarev density theorem, there exist infinitely many primes p of Q such that (p, L/Q) =
C. Hence there are infinitely many P satisfying the conditions.

Now we are ready to prove the main theorem of complex multiplication, stated below.

Theorem 7.2 (Main theorem of complex multiplication). Given the following:

� an elliptic curve E with complex multiplication by OK

� a fractional ideal a of K and a complex analytic isomorphism f : C/a → E

� an automorphism σ ∈ Aut(C) fixing K

� an idele s ∈ IK such that the global reciprocity map [s,K] agrees with σ|Kab

there exists a complex analytic isomorphism

f ′ : C/s−1a → Eσ

making the following diagram commute:

K/a K/s−1a

E(C) Eσ(C).

s−1

f f ′

σ

Proof. First we reduce to the case where E = Eā ∈ Ell(OK). This will allow us to use our results
from Section 3.

Recall that fa : C/a → Eā is an isomorphism. Suppose we know the result for Eā, fa. Then
define ϕ = f ◦f−1

a . This gives an isomorphism of elliptic curves Eā → E. We then get the following
diagram:

K/a K/s−1a

Eā(C) (Eā)
σ(C)

E(C) Eσ(C)

s−1

fa

f

(fa)
′

σ

ϕ ϕσ

σ

Then we can set f ′ = ϕσ ◦ (f∗)′. So it suffices to prove the theorem for E = Eā, f = fa.
We will prove the existence of such an f ′ on c-torsion points, and then show that they are all

the same f ′. First, we need to choose a finite extension L/K that is Galois over Q (and hence K),
and satisfies the statement of Proposition 2.11. Also pick L to be big enough to contain the ray
class field K(c).

Next, pick a prime P of L satisfying the following properties:
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i) (P, L/K) = σ|L

ii) p = P ∩K is a degree 1 prime.

iii) P is a prime of good reduction for E.

iv) For all ā ̸= ā′ ∈ Cℓ(OK), we have vP(j(Eā)− j(Eā′)) = 0.

v) p does not divide c.

Such a prime P exists, because by Lemma 7.1 there are infinitely many primes satisfying (i), (ii),
and there are only finitely many primes that do not satisfy (iii), (iv), (v).

We have
[s,K]|Kc

= σ|Kc
= (p,Kc/K).

Let π be the idele with a uniformiser in position p and 1 everywhere else. Then [π,K]|Kc
= (p,Kc)

by construction of the global reciprocity map, so we get

[s,K]|Kc
= [π,K]Kc

.

But the kernel of [·,K]Kc
is K∗Wc by definition of ray class field. So we deduce

s = παu

for some α ∈ K∗, u ∈Wc. Taking ideals of both sides then gives (s) = αp, so we learn that

C/s−1a = C/α−1p−1a.

By assumption, p does not divide c, so we have πq = 1 for all q dividing c. Hence π ∈ Ic.
Also, u ∈Wc ⊆ Ic. So

sα−1 = πu ∈ Ic.

We begin constructing f ′ by first taking the commutative square

C/a C/p−1a

E(C) (p̄ ∗ E)(C)

φp

fa ∼ fp−1a ∼

ϕp

By Lemma 3.5, we can extend the isogeny E → p̄ ∗ E by an isomorphism θ : p̄ ∗ E → Eσ such
that the composition λ = θ ◦ ϕp reduces to the p-Frobenius isogeny modulo P.

Also, multiplication by α−1 gives a complex analytic isomorphism

ϑα−1 : C/p−1a → C/s−1a.

So we can compose the isomorphisms above to get a complex analytic isomorphism

f ′ = θ ◦ fp−1a ◦ (ϑα−1)−1.

This gives the commutative diagram

C/a C/p−1a C/s−1a

E(C) (p̄ ∗ E)(C) Eσ(C)

φp

fa fp−1a

ϑα−1

f ′

ϕp θ

We now restrict our attention to the c-torsion points of C/a. Note that all the c-torsion points
of E,Eσ are defined over L.

But
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(K/a)[c] (K/p−1a)[c] (K/s−1a)[c]

E[c] Eσ[c]

φp

f ∼

ϑα−1

f ′ ∼

θ◦ϕp

� ϑα−1 is the map α·.

� πu ∈ Ic, so by Proposition 5.7, πu· acts the same as φp on c-torsion.

� For all points T ∈ E[c], we have

˜θ ◦ ϕp(T ) = T̃Frp = T̃σ.

But P does not divide c, so the reduction modulo P map is injective on c-torsion, and so we
deduce that θ ◦ ϕp, σ agree on E[c].

Hence in fact the following diagram commutes:

(K/a)[c] (K/p−1a)[c] (K/s−1a)[c]

E[c] Eσ[c]

πu·

f ∼

α·

f ′ ∼

σ

The top row of this diagram combines to give the map απu = s, so this shows what we wanted
for c-torsion.

Finally, we show that f ′ does not depend on our choice of c, provided we have Nm(c) > 4.
Suppose c1 divides c2, and the corresponding complex analytic isomorphisms we get from these

two ideals are f ′1, f
′
2. Then f

′
2 ◦ (f ′1)−1 is an isomorphism Eσ → Eσ, so it is [ζ] for some ζ ∈ O×

K .
Note that Eσ[c1] ⊆ Eσ[c2]. So for all T ∈ Eσ[c1], we have (f ′2)

−1(T ) = (f ′1)
−1(T ), implying

T = [ζ]T . Hence
[1− ζ](T ) = 0 for all T ∈ Eσ[c1].

But, if ζ ̸= 1, then

4 < |Eσ[c1]| = | ker[1− ζ]| = deg[1− ζ] = Nm(1− ζ) = |1− ζ|2 ≤ (|1|+ |ζ|)2 = 4,

which is a contradiction. So we must have ζ = 1, i.e. f ′1 = f ′2.
Therefore, the map f ′ we defined satisfies

f ′(s−1 · x) = f(x)σ

for all x ∈ K/a.

8 Generating abelian extensions of K

We now reap the rewards of our work in proving the main theorem of complex multiplication.
First, we use it to describe explicitly the maximal abelian extension of K.

8.1 Hilbert class field

Recall that Aut(C/K) acts on Ell(OK) by Galois conjugation. It also acts on the set

J = {j(E) : E ∈ Ell(OK)}

in the same way.
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Recall that the ideal class group Cℓ(OK) also acts on Ell(OK), via b̄ ∗ Eā = Eb̄−1ā. Moreover,
this action is simply transitive. So we get a simply transitive action of Cℓ(OK) on J , defined by

b̄ ∗ j(Eā) = j(Eb̄−1ā).

The main theorem of complex multiplication allows us to relate the action of the ideal class
group and the Galois group. Specifically, it tells us that

Eσā = ¯(s) ∗ Eā,

where s is an idele satisfying [s,K] = σ|Kab . In terms of j-invariants, this states

jσ = ¯(s) ∗ j

for all j ∈ J . So the Galois action is also transitive on J .

Proposition 8.1. Let H = K(J) be the field obtained from K by adjoining all elements of J .
Then

� H is the Hilbert extension of K.

� H = K(j) for any j ∈ J .

Proof. H is Galois because J is closed under Galois conjugation.
Suppose σ ∈ Aut(C/K) fixes Kab, i.e. σ|Kab = 1. Then jσ = (1) ∗ j for all j ∈ J , so σ fixes H.

Hence H is an abelian extension of K.
For s ∈ IK and j ∈ j, we have j[s,K] = j iff (s) ∗ j = j, which happens iff (s) is principal, i.e.

s ∈ K×W . Therefore [s,K]|H = 1 iff s ∈ K×W , and so H is the Hilbert class field of K.
Since the Galois action on J is transitive, the degree of any j ∈ J is |J | = hK . So we get

[K(j) : K] = hK .

But, since H is the Hilbert class field, we also have [H : K] = hK . So by tower law, we have

[H : K(j)] = 1,

i.e. H = K(j).

Example. Consider the imaginary quadratic extension Q(
√
−5)/Q. Note that K = Q(

√
−5) has

class number 2, so the Hilbert class field of K will be a degree 2 extension.
To find the j-invariant of an elliptic curve with complex multiplication by OK , we first pick a

lattice homothetic to a fractional ideal of OK . The simplest choice in this case is to take

Λ = OK = Z[
√
−5] = Z⊕ Z

√
−5 = Λ√

−5.

Then the j-invariant of C/Λ is

j(
√
−5) = 320(1975 + 884

√
5)

and so the Hilbert class field is

K(j(E)) = Q(
√
−5, 320(1975 + 884

√
5)) = Q(i,

√
5).

8.2 Weber functions

Our next step is to describe ray class fields in terms of the torsion points of E. However, what
we will find is that we can only determine what happens to the torsion points up to an overall
automorphism E → E. Weber functions provide a way for us to ‘quotient out’ this ambiguity.

Definition 8.2. A Weber function for an elliptic curve E over L is a morphism h : E → P1 defined
over L such that for all P, P ′ ∈ E

h(P ) = h(P ′) ⇐⇒ ∃ θ : E → E an automorphism such that θ(P ) = P ′.

33



The automorphisms of E correspond to the invertible elements of OK , i.e. O×
K . This group of

automorphisms will depend on K, giving us 3 cases.
Let E ∈ Ell(OK), and let j = j(E). Recall that E has equation

E :


y2 = x3 − 3j

j−1728x+ 2j
j−1728 j ̸= 0, 1728

y2 = x3 + 1 j = 0

y2 = x3 + x j = 1728

.

E is defined over K(j) = H the Hilbert class field of K.

� If K ̸= Q(i),Q(ζ3), then O×
K = {1,−1}. Then x is a Weber function for E over H, since

x(P ) = x(P ′) ⇐⇒ P ′ = ±P.

� If K = Q(ζ3), then there is only one element of Ell(OK), and it is

E : y2 = x3 + 1.

Here we have O×
K = {1, ζ6, . . . , ζ56} ∼= Z/6Z, and the automorphisms of E are generated by

[ζ6] : (x, y) 7→ (ζ3x,−y).

Then x3 is a Weber function:

x(P )3 = x(P ′)3 ⇐⇒ P ′ = [ζk6 ]P for some k.

� If K = Q(i), then there is only one element of Ell(OK), and it is

E : y2 = x3 + x.

Here we have O×
K = {1, i,−1,−i} ∼= Z/4Z, and the automorphisms of E are generated by

[i] : (x, y) 7→ (−x, iy).

Then x2 is a Weber function:

x(P )2 = x(P ′)2 ⇐⇒ P ′ = [ik]P for some k.

In summary, a Weber function for E ∈ Ell(OK) is

h =


x K ̸= Q(i),Q(ζ3)

x2 K = Q(i)

x3 K = Q(ζ3)

.

We can also give an analytic formula for a Weber function, by relating E to an isomorphic
complex torus C/Λ.

Recall that the elliptic curve EΛ has equation

EΛ : y′2 = 4x′3 − g2(Λ)x
′ − g3(Λ).

So E,EΛ are related by the change of variables

x′ = u2x, y′ = 2u3y,

where

g2(Λ) =
12j

j − 1728
u4, g3(Λ) =

−8j

j − 1728
u6.

If we want a Weber function for E defined over H, we are free to scale by any constant in H×, so
we only need to keep track of things modulo H×.
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� The complex analytic isomorphism f : C/Λ → EΛ sends z to (℘(z), ℘′(z)). So x′ = ℘(z).

� For j ̸= 0, 1728, we have g3(Λ)/g2(Λ) ∈ u2H×.

� For j ̸= 0, we have g2(Λ) ∈ u4H×.

� For j ̸= 1728, we have g3(Λ) ∈ u6H×.

Therefore, in terms of points z ∈ C/Λ, we have

h(z) =



g2(Λ)

g3(Λ)
℘(z) K ̸= Q(i),Q(ζ3)

1

g2(Λ)
℘(z)2 K = Q(i)

1

g3(Λ)
℘(z)3 K = Q(ζ3)

.

This works independently of scaling Λ, so in particular we can pick Λ to be a fractional ideal
a. Then the torsion points of C/a are the points of K/a.

8.3 Ray class fields

Next, we want to do a similar thing and find a field extension with kernel K⋆Wc.

Proposition 8.3. Let E ∈ Ell(OK), and let T ∈ E be a generator for the OK-module E[c]. Let h
be a Weber function for E defined over H = K(j(E)). Then

L = H(h(T )) = K(j(E), h(T ))

is the ray class field modulo c.

Proof. Let σ ∈ Aut(C/K), and let s ∈ IK be such that [s,K] = σ|Kab .
Suppose σ fixes the ray class field Kc. Then σ fixes the Hilbert class field H.
We have s ∈ K×Wm, by the definition of Kc. Firstly, (s) is principal, so we have (s) = (α) for

some α ∈ K×.
We also have that s−1· acts the same as θα−1 : C/a → C/s−1a on c-torsion. Next, T ∈ E[c], so

we have

Tσ = f ′(s−1 · f−1(T ))

= f ′ ◦ θα−1 ◦ f−1(T )

But f ′◦θα−1◦f−1 is an isomorphism E → Eσ = E. (Note that we cannot say that this isomorphism
is the identity, so we cannot conclude Tσ = T .) So h(Tσ) = h(T ).

Since the Weber function is defined over H, and σ fixes H, we get h(T )σ = h(T ), and so σ fixes
L.

This shows:

� L is an abelian extension of K

� L is a subfield of the ray class field modulo c.

Next we need to show the reverse containment.
Suppose σ fixes L, and let s ∈ IK be an idele such that [s,K] = σ|Kab . σ fixes H the Hilbert field,
so s ∈ K×W . We can shift s by any element of K×, as that is in the kernel of [·,K], so WLOG
s ∈W .

We have E = Eσ, so we can compose (f ′)−1 ◦ f to get an isomorphism C/a → C/a. This
isomorphism will therefore be [η] for some η ∈ µ(K).

We know that h(Tσ) = h(T )σ = h(T ), so there is some automorphism of E sending T to Tσ.
Thus, there is some ζ ∈ µ(K) such that [ζ]T = Tσ.
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Let x = f−1(T ). This generates (C/a)[c], since T generates the c-torsion of E and f is an
isomorphism. To find what s sends x to, we calculate

s · x = (f ′)−1(Tσ)

= (f ′)−1[ζ]f(x)

= [ζ](f ′)−1f(x)

= [ζη](x).

Since x generates the c-torsion, this tells us that s· acts the same as multiplication by ζη on c-
torsion. So s(ζη)−1 ∈ Ic. We also have (s(ζη)−1) = (ζη) = (1), so s(ζη)−1 ∈ W . Therefore
s(ζη)−1 ∈Wc, and so s ∈ K×Wc, which tells us that σ fixes Km.

So we learn that L contains Km, and so we are done.

Example. Consider the case K = Q(i). K has class number 1, so the Hilbert class field is equal
to K in this case. We take the elliptic curve y2 = x3 + x, which has complex multiplication by
Z[i] = OK .

To find the ray class field modulo 3, we need to find a torsion point that generates E[3]. 3 is
prime in OK , so any 3-torsion point will work. Solving the equation 3P = O gives the polynomial

3x4 + 6x2 − 1 = 0,

which has solution

x = ±

√
−1± 2

√
3

3
.

To obtain the ray class field, we therefore need to adjoin the value of x2 for any one of these points,
giving

K(3) = K

(
−1 +

2
√
3

3

)
= Q(i,

√
3).

Since the maximal abelian extension is the union of all the ray class fields, we obtain the
following explicit description of the maximal abelian extension.

Corollary 8.4. Let E ∈ Ell(OK), and let h be a Weber function for E defined over H = K(j(E)).
Then the maximal abelian extension of K is given by adjoining the values of j(E) and h(T ) for all
T ∈ Etors.

Conclusion

In this essay, we have shown how the main theorem of complex multiplication can be used to show
that the Weber function evaluated at torsion points generate the maximal abelian extension of the
quadratic imaginary field K. The main theorem has other uses too, of which we will explain one
in brief detail.

Given an elliptic curve defined over L with complex multiplication by OK , the main theorem
of complex multiplication can be used to define a Hecke character associated to the elliptic curve,
i.e. a continuous homomorphism

ψ : IL → C×

satisfying ψ(L×) = 1. This then gives rise to a Hecke L-series

L(s, ψ) =
∏
P

(1− ψ(P)Nm(P)−s)−1

where

ψ(P) =

{
ψ((. . . , 1, π, 1, . . .)) P unramified, π a uniformiser of LP

0 P ramified
.
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This Hecke L-series has a meromorphic continuation to C and satisfies a functional equation.
The L-series associated to the elliptic curve can then be shown to be related to this Hecke

L-series. This then gives a proof in the special case of elliptic curves with complex multiplication
of the Hasse-Weil conjecture, which states that the L-series associated to an elliptic curve has a
meromorphic continuation to C and satisfies a functional equation.

37



References

[1] J.W.S. Cassels. “Global Fields”. In: Algebraic Number Theory. Academic Press, 1973. Chap. II,
pp. 45–84.

[2] J.S. Milne. Class Field Theory (v4.03). Available at www.jmilne.org/math/. 2020.

[3] Joseph H. Silverman. “Complex Multiplication”. In: Advanced Topics in the Arithmetic of
Elliptic Curves. New York, NY: Springer New York, 1994, pp. 95–186. isbn: 978-1-4612-0851-
8. doi: 10.1007/978-1-4612-0851-8_3. url: https://doi.org/10.1007/978-1-4612-
0851-8_3.

[4] Joseph H. Silverman. “Elliptic Curves over C”. In: The Arithmetic of Elliptic Curves. New
York, NY: Springer New York, 2009, pp. 157–183. isbn: 978-0-387-09494-6. doi: 10.1007/978-
0-387-09494-6_6. url: https://doi.org/10.1007/978-0-387-09494-6_6.

38


